X5I13719 - Statistical learning - Cours magistral;X5I13719 - Statistical learning - Cours magistral;X5I17522 - Topics in Machine Learning - Cours magistral
This series of lectures aims at describing the main problems data scientists and machine/statistical learners have to address (data visualization, dimension reduction, clustering, classification, prediction/regression tasks). For each of these tasks, we will cover several basic strategies that should serve as reference tools at the beginning of any analysis.
The coming lectures are not "theoretical" ones since they do not contain systematic proofs of invovled (but still nice! ) theoretical results.
But the goal is nevertheless to provide guidelines (based on theoretical considerations) for a deeper understanding of the strategies that will be discussed.
For example, the best results are almost never achieved with the default choice of the parameters values. Tuning them carefully depending on the context is what makes the learning strategy work well.
Informations sur l'espace de cours
Nom | Statistical learning - MMMEF |
Nom abrégé | UP1-C-ELP-X5I13719-04 - MMMEF |
Enseignants | Celisse Alain |
Groupes utilisateurs inscrits | Consultation des ressources, participation aux activités :
|
Rattachements à l'offre de formation
Élément pédagogique | UP1-C-ELP-X5I13719 - Statistical learning |
Chemin complet | > Année 2024-2025 > Paris 1 > Mathématiques et informatique > M2 Ind Modélisation et Méthodes Math. en Economie et Finance > Semestre 3 > UE1 Cours fondamentaux (prendre 20 crédits) > Choix 6 cours (2 de 5 ECTS et 4 de 2.5 ECTS) > Choix 4 cours de 2.5 ECTS > Statistical learning |
Élément pédagogique | UP1-C-ELP-X5I13719 - Statistical learning |
Chemin complet | > Année 2024-2025 > Paris 1 > Mathématiques et informatique > M2 Ind Modélisation et Méthodes Math. en Economie et Finance > Semestre 3 > UE1 Cours fondamentaux (prendre 20 crédits) > Choix 8 cours de 2.5 ECTS > Statistical learning |
Élément pédagogique | UP1-C-ELP-X5I17522 - Topics in Machine Learning |
Chemin complet | > Année 2024-2025 > Paris 1 > Mathématiques et informatique > M2 Ind Modélisation et Méthodes Math. en Economie et Finance > Semestre 3 > UE2 Spécialisation (prendre 20 crédits) > Choix d'options > Choix 7 cours de 2.5 ECTS > Topics in Machine Learning |