Topic outline

  • OUTLINE

    In strongly connected environments like financial networks, global supply chains or social networks, the diffusion and amplification of micro-level risks can lead to the emergence of macro-level events such as financial crisis or epidemic processes. The class will present mathematical models from complex systems theory, game theory and general equilibrium theory that can be used to capture these diffusion processes and their socio-economic consequences. We will focus on three main types of risk:

    • Epidemic risk

    • Climate-related risks

    • Financial risks.


    • REFERENCES

      • Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80(5), 1977-2016.
      • Adam, Dillon C., et al. "Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong." Nature Medicine 26.11 (2020): 1714-1719.
      • Avery, C., Bossert, W., Clark, A., Ellison, G., & Ellison, S. F. (2020). An Economist's Guide to Epidemiology Models of Infectious Disease. Journal of Economic Perspectives34(4), 79-104.
      • Barrot, J. N., & Sauvagnat, J. (2016). Input specificity and the propagation of idiosyncratic shocks in production networks. The Quarterly Journal of Economics, 131(3), 1543-1592.
      • Battiston, S., Puliga, M., Kaushik, R., Tasca, P., & Caldarelli, G. (2012). Debtrank: Too central to fail? financial networks, the fed and systemic risk. Scientific reports, 2, 541.
      • Battiston, S., Mandel, A., Monasterolo, I., Schütze, F., & Visentin, G. (2017). A climate stress-test of the financial system. Nature Climate Change, 7(4), 283-288.
      • Bouveret, G. and Mandel, A. (2021). "Prophylaxis of Epidemic Spreading on networks", forthcoming, Journal of Mathematical Economics, https://bit.ly/3cQJyiM
      • Chung, F., Lu, L., & Vu, V. (2003). Spectra of Random Graphs with Given Expected Degrees. Proceedings of the National Academy of Sciences of the United States of America, 6313-6318.
      • Chowell, G., Nishiura, H., & Bettencourt, L. M. (2007). Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface, 4(12), 155-166.
      • Eisenberg, L., & Noe, T. H. (2001). Systemic risk in financial systems. Management Science, 47(2), 236-249
      • Hansen, E.  & Troy D.. "Optimal control of epidemics with limited resources." Journal of mathematical biology 62.3 (2011): 423-451.
      • Hasan, Agus, et al. "Superspreading in early transmissions of COVID-19 in Indonesia." Nature Scientific reports 10.1 (2020): 1-https://www.medrxiv.org/content/medrxiv/early/2020/07/24/2020.06.28.20142133.full.pdf
      • Hethcote, H. W.  (1976) Qualitative analyses of communicable disease mod- els. Math. Biosci., 28:335–356, http://people.kzoo.edu/barth/math280/articles/communicable_disease.pdf
      •  Hethcote, H. W. (2000) The mathematics of infectious diseases. SIAM Rev., 42(4):599–653, https://www.maths.usyd.edu.au/u/marym/populations/hethcote.pdf
      • Matrajt, L., Eaton, J., Leung, T., & Brown, E. R. (2020). Vaccine optimization for COVID-19: who to vaccinate first?. medRxiv., see https://www.medrxiv.org/content/10.1101/2020.08.14.20175257v3.full.pdf
      • Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of modern physics, 87(3), 925, see https://www.nas.ewi.tudelft.nl/people/Piet/papers/RMP2014_EpidemicsReview.pdf
      • Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical review letters86(14), 3200. see http://www.ffn.ub.es/albert/complex_networks/romu.prl.pdf
      • Van Mieghem, P., Omic, J., & Kooij, R. (2008). Virus spread in networks. IEEE/ACM Transactions On Networking, 17(1), 1-14.
      • Avery, C., Bossert, W., Clark, A., Ellison, G., & Ellison, S. F. (2020). An Economist's Guide to Epidemiology Models of Infectious Disease. Journal of Economic Perspectives, 34(4), 79-104.
      • Harko, T., Lobo, F. S., & Mak, M. K. (2014). Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation236, 184-194.
      • Ellison, G. (2020). Implications of heterogeneous SIR models for analyses of COVID-19 (No. w27373). National Bureau of Economic Research.


      • Papers for oral presentation

        • Atkeson, Andrew. What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios. No. w26867. National Bureau of Economic Research, 2020
        • .Bubar, K. M., Reinholt, K., Kissler, S. M., Lipsitch, M., Cobey, S., Grad, Y. H., & Larremore, D. B. (2021). Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science.
        • Hasan, Agus, et al. "Superspreading in early transmissions of COVID-19 in Indonesia." Nature Scientific reports 10.1 (2020): 1-
        • Salje, Henrik, et al. "Estimating the burden of SARS-CoV-2 in France." Science (2020), see https://science.sciencemag.org/content/369/6500/208 and https://science.sciencemag.org/content/suppl/2020/05/12/science.abc3517.DC1
        • Chang S. et al. (2020) Mobility network models of COVID-19 explain inequities and inform reopening. Nature. 2020 Nov 10:1-6, see https://www.nature.com/articles/s41586-020-2923-3
        • Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical review letters, 86(14), 3200. see http://www.ffn.ub.es/albert/complex_networks/romu.prl.pdf
        • Hsiang, Solomon, et al. "Estimating economic damage from climate change in the United States." Science 356.6345 (2017): 1362-1369. (Karol Markiewicz, March 29th)
        • Lenton, Timothy M., et al. "Tipping elements in the Earth's climate system." Proceedings of the national Academy of Sciences 105.6 (2008): 1786-1793. (???)
        • Nordhaus, William D. "Revisiting the social cost of carbon." Proceedings of the National Academy of Sciences 114.7 (2017): 1518-1523. (Yufei YE, March 29th)
        • Rockström, Johan, et al. "A safe operating space for humanity." nature 461.7263 (2009): 472-475. (Paulina Klaudia Tarsa, March 29th)
        • Barrot, J. N., & Sauvagnat, J. (2016). Input specificity and the propagation of idiosyncratic shocks in production networks. The Quarterly Journal of Economics, 131(3), 1543-1592.
        • Carvalho, Vasco M., et al. "Supply chain disruptions: Evidence from the great east japan earthquake." The Quarterly Journal of Economics,  https://doi.org/10.1093/qje/qjaa044 (Lou H. Q. , March 29th)
        • Weitzman, Martin L. "On modeling and interpreting the economics of catastrophic climate change." The Review of Economics and Statistics 91.1 (2009): 1-19 (Wu Yang)
        • Hsiang, Solomon. "Climate econometrics." Annual Review of Resource Economics 8 (2016): 43-75 (Jonathan Weingarten).
        • Dasgupta, Partha. "Discounting climate change." Journal of risk and uncertainty 37.2 (2008): 141-169.