Master MMMEF, 2021-2022 Homeword on:
 General Equilibrium Theory: Economic analysis of financial markets November 2021

November 11, 2021

We consider a three-period model with the uncertainty represented by the graph $\mathbb{D} . \mathbb{D}_{1}$ is the set of states of nature at date 1 and \mathbb{D}_{2} the set of states of nature at date 2 . We assume that we have a unique commodity at each state. We consider a financial structure with a finite collection of \mathcal{J} nominal assets. The main difference with the two-period model is the fact that the assets can be issued at date 0 but also at the nodes at date 1 . For an asset $j \in \mathcal{J}$, we denote by $\xi(j)$ its node of issuance. An asset is bought or sold only at its node of issuance at a price q_{j}. An asset yields payoffs only at the successor nodes of its issuance node. So, if an asset is issued at date 0 , at the unique node ξ_{0}, then it yields payoff at the nodes in $\mathbb{D}_{1} \cup \mathbb{D}_{2}$, and if an asset j is issued at date 1 , it yields payoffs only at the immediate successors of its issuance node $\xi(j)^{+} \subset \mathbb{D}_{2}$. We assume that we have no trivial asset with a zero payoff for all nodes. To simplify the notation, we consider the payoff of asset j at every node $\xi \in \mathbb{D}$ and we assume that it is equal to zero if ξ is not a successor of the issuance node $\xi(j)$. So we consider the payoff matrix V, which is a $\sharp \mathbb{D} \times \mathcal{J}$ matrix. Note that the first row of the matrix V has only 0 entries. A portfolio z is an element in $\mathbb{R}^{\mathcal{J}}$.

For asset prices $q \in \mathbb{R}^{\mathcal{J}}$, the full payoff matrix $W(q)$ is the $\sharp \mathbb{D} \times \mathcal{J}$ matrix defined by:

$$
W_{\xi}^{j}(q):=V_{\xi}^{j}-\delta_{\xi, \xi(j)} q_{j},
$$

where $\delta_{\xi, \xi^{\prime}}=1$ if $\xi=\xi^{\prime}$ and 0 otherwise.
The asset price $q \in \mathbb{R}^{\mathcal{J}}$ is an arbitrage free price if it does not exist a portfolio $z \in \mathbb{R}^{\mathcal{J}}$ such that $W(q) z>0$.

Let $\mathbb{D}=\left\{\xi_{0}, \xi_{1}, \xi_{2}, \xi_{11}, \xi_{12}\right\}$ with $\xi_{0}^{+}=\left\{\xi_{1}, \xi_{2}\right\}, \xi_{1}^{+}=\left\{\xi_{11}\right\}$ and $\xi_{2}^{+}=\left\{\xi_{21}\right\}$.

1) Draw the tree \mathbb{D}.

We consider the financial structure with three assets $\mathcal{J}=\left\{j^{1}, j^{2}, j^{3}\right\}, \xi\left(j^{1}\right)=$
$\xi_{0}, \xi\left(j^{2}\right)=\xi_{1}$ and $\xi\left(j^{3}\right)=\xi_{2}$. The payoff matrix is

$$
\mathbf{V}=\left[\begin{array}{ccc}
\mathbf{0} & 0 & 0 \\
1 & \mathbf{0} & 0 \\
-1 & 0 & \mathbf{0} \\
-1 & -1 & 0 \\
1 & 0 & 1
\end{array}\right] \begin{aligned}
& \xi_{0} \\
& \xi_{1} \\
& \xi_{2} \\
& \xi_{11} \\
& \xi_{21}
\end{aligned}
$$

2) Write the full payoff matrix $W(q)$ with $\bar{q}=(0,-1,1)$.
3) Show that the kernel of V is included and different to the kernel of $W(\bar{q})$.

We are now coming back to the general model.
4) By mimicking the proof given in the course, show that q is an arbitrage free price if and only if it exists a state price vector $\lambda \in \mathbb{R}_{++}^{\mathbb{D}}$ such that ${ }^{t} W(p, q) \lambda=0$ or equivalently

$$
\forall j \in \mathcal{J}, \lambda_{\xi(j)} q_{j}=\sum_{\xi \in \mathbb{D}^{+}(\xi(j))} \lambda_{\xi} V_{\xi}^{j}
$$

5) Show that the kernel of V is equal to the kernel of $W(q)$ for all arbitrage free asset price q when the assets are all issued at date 0 (resp. at date 1).
6) Show that the kernel of V is equal to the kernel of $W(q)$ for all arbitrage free asset price q when the assets issued at date 0 are short term assets with a non-zero payoff only for the nodes in \mathbb{D}_{1} of the period 1 .
7) Let \mathbb{D}_{1}^{e} be the nodes at date 1 such that there is at least one asset issued at this node. For $\xi \in \mathbb{D}_{1}^{e}$, we denote by E_{ξ} the linear subspace of $\mathbb{R}^{\xi^{+}}$generated by the vectors of payoffs of the assets issued at node ξ. For $\xi \in \mathbb{D}_{1}^{e}$, we denote by E_{ξ}^{0} the linear subspace of $\mathbb{R}^{\xi^{+}}$generated by the vector of payoffs of the assets issued at node ξ_{0} if any, or $E_{\xi}^{0}=\left\{0_{\mathbb{R}^{\xi^{+}}}\right\}$.

Show that the kernel of V is equal to the kernel of $W(q)$ for all arbitrage free asset price q when the following condition is satisfied: for all nodes $\xi \in \mathbb{D}_{1}^{e}$, $E_{\xi} \cap E_{\xi}^{0}=\left\{0_{\mathbb{R}^{\xi}}\right\}$.

We are considering again the numerical example presented above.
8) Show that $\bar{q}=(0,-1,1)$ is an arbitrage free asset.
9) For $\xi=\xi_{1}$ and ξ_{2}, determine the spaces E_{ξ} and E_{ξ}^{0} and show that the condition of Question 7 is not satisfied.
10) Determine all arbitrage free asset prices q such that the kernel of V is not equal to the kernel of $W(q)$.

