Master MMMEF, 2020-2021 Homeword on: General Equilibrium Theory: Economic analysis of financial markets November 2020

November 10, 2020

We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . \mathbb{D}_1 is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure with a finite collection of \mathcal{J} assets, represented by the payoff mapping $p \to V(p)$ from $\mathbb{R}^{\mathbb{D}}$ to the set of $\#\mathbb{D}_1 \times \mathcal{J}$ matrices.

1) Show that the rank of the full payoff matrix W(p,q) for a commodity price p and an asset price $q \in \mathbb{R}^{\mathcal{J}}$ has the same rank than the payoff matrix V if q is arbitrage free.

2) We assume that V(p) is one-to-one. Show that the set Q(p) is an open convex cone of $\mathbb{R}^{\mathcal{J}}$.

3) We assume that the bond is among the collection of assets \mathcal{J} , that is the asset whose payoffs are equal to 1 at each state $\xi \in \mathbb{D}_1$. The bond is the asset j_0 . We consider an arbitrage free asset price q such that $q_{j_0} = 1$. Show that for all asset j,

 $q_j \in]\min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}, \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}[$

4) We assume now that $\#\mathbb{D}_1 = 2$ and that the collection \mathcal{J} contains only nominal assets. The payoff matrix is

$$V = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$$

Let q be an arbitrage free price such that $q_1 = 1$. Show that $q_2 \in] -1, 2[$. Compute the no arbitrage price of the asset k with payoffs (0, 2) as a function of q_2 . Compute the portfolio $z \in \mathbb{R}^2$ of the two initial assets which duplicates Asset k.

5) We consider a partition $\mathcal{P} = (\Xi_j)_{j \in \mathcal{J}}$ of \mathbb{D}_1 where all subsets Ξ_j is nonempty. For all $j \in \mathcal{J}$, we associates the nominal asset j defined by its payoffs: 1 for $\xi \in \Xi_j$ and 0 otherwise. a) Show that the payoff matrix V of this financial structure is one-to-one.

b) Show that the set of no arbitrage asset prices is $\mathbb{R}^{\mathcal{J}}_{++}$.

c) Show that the asset price q defined by $q_j = \frac{\sharp \Xi_j}{\sharp \mathbb{D}_1}$ is arbitrage free and give one present value vector associated to q_j .

d) Let π be a probability on \mathbb{D}_1 such that $\pi(\xi) > 0$ for all $\xi \in \mathbb{D}_1$. Show that q defined by $q_j = \pi(\Xi_j)$ is an arbitrage free price and give one present value vector associated to q_j .

e) Show that the financial structure V is complete if and only if the partition \mathcal{P} contains all singletons $\{\xi\}_{\xi\in\mathbb{D}_1}$.