Master MMMEF, 2020-2021 Solution of the homework on: General Equilibrium Theory: Economic analysis of financial markets November 2020

December 7, 2020

We consider a two-period model with the uncertainty represented by the graph $\mathbb{D} . \mathbb{D}_{1}$ is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure with a finite collection of \mathcal{J} assets, represented by the payoff mapping $p \rightarrow V(p)$ from $\mathbb{R}^{\mathbb{D}}$ to the set of $\not \mathbb{D}_{1} \times \mathcal{J}$ matrices.

1) Show that the rank of the full payoff matrix $W(p, q)$ for a commodity price p and an asset price $q \in \mathbb{R}^{\mathcal{J}}$ has the same rank than the payoff matrix V if q is arbitrage free.

Let q be an arbitrage free asset price. Then, from the characterisation proved in the course, there exists $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_{1}}$ such that $q=V(p)^{t} \lambda$. We know that the rank of V plus the dimension of the kernel of $V(p)$ is equal to $\sharp J$ the dimension of the space $\mathbb{R}^{\mathcal{J}}$. The same formula holds true for $W(p, q)$, which is defined on the space $\mathbb{R}^{\mathcal{J}}$. So, to prove the equality of the rank, it suffices to prove that the kernel are identical.

Since

$$
W(p, q)=\binom{-q}{V(p)}
$$

one clearly has $\operatorname{Ker} W(p, q) \subset \operatorname{Ker} V(p)$. If $z \in \operatorname{Ker} V(p)$, then $V(p) z=0$ and $\lambda \cdot V(p) z=V(p)^{t} \lambda \cdot z=q \cdot z=0$, so $W(p, q) z=0$ and the kernels coincide.
2) We assume that $V(p)$ is one-to-one. Show that the set $Q(p)$ is an open convex cone of $\mathbb{R}^{\mathcal{J}}$.
$Q(p)$ is the image by a linear mapping $V(p)^{t}$ of the convex cone $\mathbb{R}_{++}^{\mathbb{D}_{1}}$, so it is a convex cone.

If $V(p)$ is one-to-one, then $V(p)^{t}$ is onto and the image of an open set by a onto linear mapping is open. So $Q(p)=V(p)^{t} \mathbb{R}_{++}^{\mathbb{D}_{1}}$ is open.
3) We assume that the bond is among the collection of assets \mathcal{J}, that is the asset whose payoffs are equal to 1 at each state $\xi \in \mathbb{D}_{1}$. The bond is the asset j_{0}. We consider an arbitrage free asset price q such that $q_{j_{0}}=1$. Show that for all asset j,

$$
\left.q_{j} \in\right] \min \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}, \max \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}[
$$

Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_{1}}$ be the present value vector associated to q. We remark that $q_{j_{0}}=$ $1=\sum_{\xi \in \mathbb{D}_{1}} \lambda_{\xi}$. For all asset $j \in \mathcal{J}, q_{j}=\sum_{\xi \in \mathbb{D}_{1}} \lambda_{\xi} V_{\xi}(p)$. For all $\xi \in \mathbb{D}_{1}, V_{\xi}(p) \geq$ $\min \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$ and $V_{\xi}(p) \leq \max \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$. So multiplying these inequalities by λ_{ξ} and summing over ξ, we get $q_{j} \geq \min \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$ and $q_{j} \leq \max \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$.

If the asset j has not a constant payoff across the state of nature, that is if $\min \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}<\max \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$, then the inequalities are strict since for at least one $\bar{\xi}, V_{\bar{\xi}}(p)>\min \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$ and for at least one ξ^{\prime}, $V_{\xi^{\prime}}(p)<\max \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}$, so

$$
\left.q_{j} \in\right] \min \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}, \max \left\{v_{j}(p, \xi) \mid \xi \in \mathbb{D}_{1}\right\}[
$$

in this case.
4) We assume now that $\not \mathbb{D}_{1}=2$ and that the collection \mathcal{J} contains only nominal assets. The payoff matrix is

$$
V=\left(\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right)
$$

Let q be an arbitrage free price such that $q_{1}=1$. Show that $\left.q_{2} \in\right]-1,2[$. Compute the no arbitrage price of the asset k with payoffs $(0,2)$ as a function of q_{2}. Compute the portfolio $z \in \mathbb{R}^{2}$ of the two initial assets which duplicates Asset k.

Let $\lambda \in \mathbb{R}_{++}^{2}$ the present value vector associated to q. Then $q_{1}=1=\lambda_{1}+\lambda_{2}$. Using the same argument as in the previous question, $\left.q_{2}=-\lambda_{1}+2 \lambda_{2} \in\right]-1,2[$.

From the pricing by arbitrage, the price q_{k} of the asset k is equal to $2 \lambda_{2}$ and $q_{2}=-\left(1-\lambda_{2}\right)+2 \lambda_{2}$. So, $\lambda_{2}=\frac{q_{2}+1}{3}$. So, $q_{k}=2 \frac{q_{2}+1}{3}$.

We remark that

$$
\binom{0}{2}=\left(\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right)\binom{\frac{2}{3}}{\frac{2}{3}}
$$

so the portfolio $z=\left(\frac{2}{3}, \frac{2}{3}\right)$ duplicates Asset k.
5) We consider a partition $\mathcal{P}=\left(\Xi_{j}\right)_{j \in \mathcal{J}}$ of \mathbb{D}_{1} where all subsets Ξ_{j} is nonempty. For all $j \in \mathcal{J}$, we associates the nominal asset j defined by its payoffs: 1 for $\xi \in \Xi_{j}$ and 0 otherwise.
a) Show that the payoff matrix V of this financial structure is one-to-one.

Since \mathcal{P} is a partition, for each j, Ξ_{j} is nonempty, so there exists a state of nature $\xi \in \mathbb{D}_{1}$ such that $\xi \in \Xi_{j}$ and $\xi \notin \Xi_{j^{\prime}}$ for all $j^{\prime} \neq j$. Hence, on the row ξ of the payoff matrix V of this financial structure, there is only one entries equals to 1 on the j th column. So, if $V z=0$, this implies that $z_{j}=0$ by considering
the row ξ. Since this is true for all $j \in \mathcal{J}$, then $z=0$, which shows that V is one-to-one.
b) Show that the set of no arbitrage asset prices is $\mathbb{R}_{++}^{\mathcal{J}}$.

Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_{1}}$. Then, the j th component of $V^{t} \lambda$ is equal to $\sum_{\xi \in \Xi_{j}} \lambda_{\xi}$. So, one deduces that $V^{t} \lambda \in \mathbb{R}_{++}^{\mathcal{J}}$, so the set of no arbitrage asset prices is included in $\mathbb{R}_{++\cdot}^{\mathcal{J}}$.

Let $q \in \mathbb{R}_{++}^{\mathcal{J}}$. Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_{1}}$ defined as follows: for all $\xi \in \mathbb{D}_{1}$, there exists a unique $j \in \mathcal{J}$ such that $\xi \in \Xi_{j}$. So, we define $\lambda_{\xi}=\frac{q_{j}}{\psi \Xi_{j}}$. From the formula of the above paragraph, we deduces that q_{j} is equal to the j th component of $V^{t} \lambda$. So q is an arbitrage free asset price. Hence, the set of no arbitrage asset prices is equal to $\mathbb{R}_{++}^{\mathcal{J}}$.
c) Show that the asset price q defined by $q_{j}=\frac{\frac{\| \Xi_{j}}{\sharp \mathbb{D}_{1}}}{}$ is arbitrage free and give one present value vector associated to q_{j}.

Using the computation of the previous question, we check that $q=V^{t} \lambda$ for $\lambda_{\xi}=\frac{1}{q_{1} 1}$ for all ξ. So, q is an arbitrage free asset price and λ is one present value vector associated to q.
d) Let π be a probability on \mathbb{D}_{1} such that $\pi(\xi)>0$ for all $\xi \in \mathbb{D}_{1}$. Show that q defined by $q_{j}=\pi\left(\Xi_{j}\right)$ is an arbitrage free price and give one present value vector associated to q_{j}.

Once again, using the computation of (b), we check that $q=V^{t} \pi$. So, q is an arbitrage free asset price and π is one present value vector associated to q.
e) Show that the financial structure V is complete if and only if the partition \mathcal{P} contains all singletons $\{\xi\}_{\xi \in \mathbb{D}_{1}}$.

If the partition \mathcal{P} contains all singletons $\{\xi\}_{\xi \in \mathbb{D}_{1}}$, then $\sharp J=\not \mathbb{D}_{1}$ and from Question (a), V is a one-to-one square matrix, so, it is regular, hence onto, and so the financial structure is complete.

Conversely, if the financial structure is complete, then V is of rank $\sharp \mathbb{D}_{1}$, which means that the number of columns of $V, \sharp \mathcal{J}$ is greater or equal to $\sharp \mathbb{D}_{1}$. The only partition of \mathbb{D}_{1} with more than $\sharp \mathcal{J}$ elements is the partition of all singletons of \mathbb{D}_{1}.

