Master MMMEF, 2020-2021 Solution of the homework on: General Equilibrium Theory: Economic analysis of financial markets November 2020

December 7, 2020

We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . \mathbb{D}_1 is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure with a finite collection of \mathcal{J} assets, represented by the payoff mapping $p \to V(p)$ from $\mathbb{R}^{\mathbb{D}}$ to the set of $\sharp \mathbb{D}_1 \times \mathcal{J}$ matrices.

1) Show that the rank of the full payoff matrix W(p,q) for a commodity price p and an asset price $q \in \mathbb{R}^{\mathcal{J}}$ has the same rank than the payoff matrix V if q is arbitrage free.

Let q be an arbitrage free asset price. Then, from the characterisation proved in the course, there exists $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_1}$ such that $q = V(p)^t \lambda$. We know that the rank of V plus the dimension of the kernel of V(p) is equal to $\sharp J$ the dimension of the space $\mathbb{R}^{\mathcal{J}}$. The same formula holds true for W(p,q), which is defined on the space $\mathbb{R}^{\mathcal{J}}$. So, to prove the equality of the rank, it suffices to prove that the kernel are identical.

Since

$$W(p,q) = \begin{pmatrix} -q \\ V(p) \end{pmatrix}$$

one clearly has $\operatorname{Ker} W(p,q) \subset \operatorname{Ker} V(p)$. If $z \in \operatorname{Ker} V(p)$, then V(p)z = 0 and $\lambda \cdot V(p)z = V(p)^t \lambda \cdot z = q \cdot z = 0$, so W(p,q)z = 0 and the kernels coincide.

2) We assume that V(p) is one-to-one. Show that the set Q(p) is an open convex cone of $\mathbb{R}^{\mathcal{J}}$.

Q(p) is the image by a linear mapping $V(p)^t$ of the convex cone $\mathbb{R}^{\mathbb{D}_1}_{++}$, so it is a convex cone.

If V(p) is one-to-one, then $V(p)^t$ is onto and the image of an open set by a onto linear mapping is open. So $Q(p) = V(p)^t \mathbb{R}_{++}^{\mathbb{D}_1}$ is open.

3) We assume that the bond is among the collection of assets \mathcal{J} , that is the asset whose payoffs are equal to 1 at each state $\xi \in \mathbb{D}_1$. The bond is the asset j_0 . We consider an arbitrage free asset price q such that $q_{j_0} = 1$. Show that for all asset j,

$$q_j \in]\min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}, \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}[$$

Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_1}$ be the present value vector associated to q. We remark that $q_{j_0} = 1 = \sum_{\xi \in \mathbb{D}_1} \lambda_{\xi}$. For all asset $j \in \mathcal{J}$, $q_j = \sum_{\xi \in \mathbb{D}_1} \lambda_{\xi} V_{\xi}(p)$. For all $\xi \in \mathbb{D}_1$, $V_{\xi}(p) \ge \min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$ and $V_{\xi}(p) \le \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$. So multiplying these inequalities by λ_{ξ} and summing over ξ , we get $q_j \ge \min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$ and $q_j \le \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$.

If the asset j has not a constant payoff across the state of nature, that is if $\min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\} < \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$, then the inequalities are strict since for at least one $\overline{\xi}$, $V_{\overline{\xi}}(p) > \min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$ and for at least one ξ' , $V_{\xi'}(p) < \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}$, so

$$q_j \in]\min\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}, \max\{v_j(p,\xi) \mid \xi \in \mathbb{D}_1\}[$$

in this case.

4) We assume now that $\sharp \mathbb{D}_1 = 2$ and that the collection \mathcal{J} contains only nominal assets. The payoff matrix is

$$V = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$$

Let q be an arbitrage free price such that $q_1 = 1$. Show that $q_2 \in]-1, 2[$. Compute the no arbitrage price of the asset k with payoffs (0, 2) as a function of q_2 . Compute the portfolio $z \in \mathbb{R}^2$ of the two initial assets which duplicates Asset k.

Let $\lambda \in \mathbb{R}^2_{++}$ the present value vector associated to q. Then $q_1 = 1 = \lambda_1 + \lambda_2$. Using the same argument as in the previous question, $q_2 = -\lambda_1 + 2\lambda_2 \in]-1, 2[$.

From the pricing by arbitrage, the price q_k of the asset k is equal to $2\lambda_2$ and $q_2 = -(1 - \lambda_2) + 2\lambda_2$. So, $\lambda_2 = \frac{q_2+1}{3}$. So, $q_k = 2\frac{q_2+1}{3}$.

We remark that

$$\begin{pmatrix} 0\\2 \end{pmatrix} = \begin{pmatrix} 1 & -1\\1 & 2 \end{pmatrix} \begin{pmatrix} \frac{2}{3}\\ \frac{2}{3}\\ \frac{2}{3} \end{pmatrix}$$

so the portfolio $z = (\frac{2}{3}, \frac{2}{3})$ duplicates Asset k.

5) We consider a partition $\mathcal{P} = (\Xi_j)_{j \in \mathcal{J}}$ of \mathbb{D}_1 where all subsets Ξ_j is nonempty. For all $j \in \mathcal{J}$, we associates the nominal asset j defined by its payoffs: 1 for $\xi \in \Xi_j$ and 0 otherwise.

a) Show that the payoff matrix V of this financial structure is one-to-one.

Since \mathcal{P} is a partition, for each j, Ξ_j is nonempty, so there exists a state of nature $\xi \in \mathbb{D}_1$ such that $\xi \in \Xi_j$ and $\xi \notin \Xi_{j'}$ for all $j' \neq j$. Hence, on the row ξ of the payoff matrix V of this financial structure, there is only one entries equals to 1 on the *j*th column. So, if Vz = 0, this implies that $z_j = 0$ by considering

the row ξ . Since this is true for all $j \in \mathcal{J}$, then z = 0, which shows that V is one-to-one.

b) Show that the set of no arbitrage asset prices is $\mathbb{R}^{\mathcal{J}}_{++}$.

Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_1}$. Then, the *j*th component of $V^t \lambda$ is equal to $\sum_{\xi \in \Xi_j} \lambda_{\xi}$. So, one deduces that $V^t \lambda \in \mathbb{R}_{++}^{\mathcal{J}}$, so the set of no arbitrage asset prices is included in $\mathbb{R}_{++}^{\mathcal{J}}$.

Let $q \in \mathbb{R}_{++}^{\mathcal{J}}$. Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_1}$ defined as follows: for all $\xi \in \mathbb{D}_1$, there exists a unique $j \in \mathcal{J}$ such that $\xi \in \Xi_j$. So, we define $\lambda_{\xi} = \frac{q_j}{\sharp \Xi_j}$. From the formula of the above paragraph, we deduces that q_j is equal to the *j*th component of $V^t \lambda$. So q is an arbitrage free asset price. Hence, the set of no arbitrage asset prices is equal to $\mathbb{R}_{++}^{\mathcal{J}}$.

c) Show that the asset price q defined by $q_j = \frac{\sharp \Xi_j}{\sharp \mathbb{D}_1}$ is arbitrage free and give one present value vector associated to q_j .

Using the computation of the previous question, we check that $q = V^t \lambda$ for $\lambda_{\xi} = \frac{1}{\sharp \mathbb{D}_1}$ for all ξ . So, q is an arbitrage free asset price and λ is one present value vector associated to q.

d) Let π be a probability on \mathbb{D}_1 such that $\pi(\xi) > 0$ for all $\xi \in \mathbb{D}_1$. Show that q defined by $q_j = \pi(\Xi_j)$ is an arbitrage free price and give one present value vector associated to q_j .

Once again, using the computation of (b), we check that $q = V^t \pi$. So, q is an arbitrage free asset price and π is one present value vector associated to q.

e) Show that the financial structure V is complete if and only if the partition \mathcal{P} contains all singletons $\{\xi\}_{\xi\in\mathbb{D}_1}$.

If the partition \mathcal{P} contains all singletons $\{\xi\}_{\xi\in\mathbb{D}_1}$, then $\sharp J = \sharp\mathbb{D}_1$ and from Question (a), V is a one-to-one square matrix, so, it is regular, hence onto, and so the financial structure is complete.

Conversely, if the financial structure is complete, then V is of rank $\#\mathbb{D}_1$, which means that the number of columns of V, $\#\mathcal{J}$ is greater or equal to $\#\mathbb{D}_1$. The only partition of \mathbb{D}_1 with more than $\#\mathcal{J}$ elements is the partition of all singletons of \mathbb{D}_1 .