Master MMMEF, 2020-2021 Final Exam on: General Equilibrium Theory: Economic analysis of financial markets December 2020

December 16, 2020

Q1) What is the definition of an Arrow Security?

Q2) What is the definition of a redundant asset?

Q3) Under the assumption that $p(\xi) \neq 0$ for all $\xi \in \mathbb{D}$, provide a necessary and sufficient condition under which V(p) is complete.

Q4) Let (p,q) be a spot - asset price pair such that q is arbitrage free. How can we choose a price $\pi \in \mathbb{R}^{\mathbb{L}}$ such that the financial budget set $B^{\mathcal{F}}(p,q)$ is included in the Walrasian budget set $B^{W}(\pi, \pi \cdot e_i)$?

Q5) What is the definition of the over hedging price of an asset for a given financial structure?

Exercise 1 We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . \mathbb{D}_1 , the set of states of nature at date 1, is equal to $\{\xi_1, \xi_2, \xi_3, \xi_4\}$. The financial structure is composed of two nominal assets with the following payoff matrix:

$$V = \begin{pmatrix} 1 & 0\\ -1 & 2\\ 0 & 1\\ 2 & -1 \end{pmatrix}$$

1) Represent graphically in \mathbb{R}^2 the set Z^+ of portfolios z such that $Vz \ge 0$.

2) Show that q is an arbitrage free portfolio if and only if $q \cdot z > 0$ for all $z \in Z^+ \setminus \{0\}$.

3) Represent graphically the set of arbitrage free portfolios.

Exercise 2 We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . \mathbb{D}_1 is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure \mathcal{F} with a nonempty finite collection of \mathcal{J} assets, represented by the payoff mapping

 $p \to V(p)$ from $\mathbb{R}^{\mathbb{D}}$ to the set of $\sharp \mathbb{D}_1 \times \mathcal{J}$ matrices. We assume that $p(\xi) > 0$ for all $\xi \in \mathbb{D}$.

Let k be an asset whose payoffs are $(v_k(p,\xi))_{\xi\in\mathbb{D}_1}$. We consider the financial structure $\tilde{\mathcal{F}}$ obtained by adding this new asset to the structure \mathcal{F} : the collection of assets of $\tilde{\mathcal{F}}$ is $\mathcal{J} \cup \{k\}$ and the $\sharp \mathcal{J}$ first columns of the payoff matrix $\tilde{V}(p)$ are the columns of the matrix V(p) and the last column is the column of the payoffs of the asset k:

$$\tilde{V}(p) = \left(V(p) \quad \vdots \quad (v_k(p,\xi))_{\xi \in \mathbb{D}_1}\right)$$

1) Show that if $\tilde{q} = ((q_j)_{j \in \mathcal{J}}, q_k)$ is arbitrage free for the structure $\tilde{\mathcal{F}}$ at p, then the asset price $(q_j)_{j \in \mathcal{J}}$ is arbitrage free for the structure \mathcal{F} at p.

2) Show that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p if and only if the payoff vector $(v_k(p,\xi))_{\xi\in\mathbb{D}_1}$ belongs to the range of V(p).

3) Show that if q is an arbitrage free asset price for the structure V at p and the structures V and \tilde{V} are equivalent at p, then there exists a unique asset price q_k for the asset k such that $\tilde{q} = (q, q_k)$ is arbitrage free for the structure \tilde{V} at p.

4) Show that if the financial structure \mathcal{F} is complete at p, then \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p.

We assume now that there is no redundant asset for the financial structure \mathcal{F} at the price p.

5) Show that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p if and only if the financial structure $\tilde{\mathcal{F}}$ has a useless portfolio.

Exercise 3 We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . $\mathbb{D}_1 = \{\xi_1, \ldots, \xi_K\}$ is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure \mathcal{F} with a nonempty finite collection $\mathcal{J} = \{1, \ldots, J\}$ of nominal assets defined as follows. Asset 1 has a positive payoff $v_k > 0$ for all $\xi_k \in \mathbb{D}_1$. Then there exists $0 < k_1 < k_2 < \ldots < k_{J-1} < K$ and the payoffs of Asset j at node ξ_k is 0 if $k \leq k_{j-1}$ and v_{ξ_k} otherwise. So the payoff matrix is as follows:

$$V = \begin{pmatrix} v_1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{k_1} & 0 & 0 & \dots & 0 \\ v_{(k_1+1)} & v_{(k_1+1)} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{k_2} & v_{k_2} & 0 & \dots & 0 \\ v_{(k_2+1)} & v_{(k_2+1)} & v_{(k_2+1)} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{k_3} & v_{k_3} & v_{k_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{(k_{J-1}+1)} & v_{(k_{J-1}+1)} & v_{(k_{J-1}+1)} & \dots & v_{(k_{J-1}+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_K & v_K & v_K & \dots & v_K \end{pmatrix}$$

1) Show that the payoff matrix V of this financial structure is one-to-one.

2) Show that the set of no arbitrage asset prices is

$$Q = \{q \in \mathbb{R}_{++}^{\mathcal{J}} \mid q_1 > q_2 > \ldots > q_J\}$$

Hint: you can start by showing that $Q \subset \{q \in \mathbb{R}_{++}^{\mathcal{J}} \mid q_1 > q_2 > \ldots > q_J\}$ and then show the converse inclusion.

3) Show that the financial structure \mathcal{F} is complete if and only if K = J and $k_1 = 1, k_2 = 2, ..., k_{J-1} = J - 1$.

4) Show that the financial structure \mathcal{F} is equivalent to the financial structure $\tilde{\mathcal{F}}$ associated to the following payoff matrix:

$$\tilde{V} = \begin{pmatrix} v_1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{k_1} & 0 & 0 & \dots & 0 \\ 0 & v_{(k_1+1)} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & v_{k_2} & 0 & \dots & 0 \\ 0 & 0 & v_{(k_2+1)} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & v_{k_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & v_{(k_{J-1}+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & v_K \end{pmatrix}$$