Master MMMEF, 2020-2021 Final Exam on: General Equilibrium Theory: Economic analysis of financial markets December 2020

December 16, 2020

Q1) What is the definition of an Arrow Security?
Q2) What is the definition of a redundant asset?
Q3) Under the assumption that $p(\xi) \neq 0$ for all $\xi \in \mathbb{D}$, provide a necessary and sufficient condition under which $V(p)$ is complete.
Q4) Let (p, q) be a spot - asset price pair such that q is arbitrage free. How can we choose a price $\pi \in \mathbb{R}^{\mathbb{L}}$ such that the financial budget set $B^{\mathcal{F}}(p, q)$ is included in the Walrasian budget set $B^{W}\left(\pi, \pi \cdot e_{i}\right)$?
Q5) What is the definition of the over hedging price of an asset for a given financial structure?

Exercise 1 We consider a two-period model with the uncertainty represented by the graph \mathbb{D}. \mathbb{D}_{1}, the set of states of nature at date 1 , is equal to $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$. The financial structure is composed of two nominal assets with the following payoff matrix:

$$
V=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2 \\
0 & 1 \\
2 & -1
\end{array}\right)
$$

1) Represent graphically in \mathbb{R}^{2} the set Z^{+}of portfolios z such that $V z \geq 0$.
2) Show that q is an arbitrage free portfolio if and only if $q \cdot z>0$ for all $z \in Z^{+} \backslash\{0\}$.
3) Represent graphically the set of arbitrage free portfolios.

Exercise 2 We consider a two-period model with the uncertainty represented by the graph $\mathbb{D} . \mathbb{D}_{1}$ is the set of states of nature at date 1 . We assume that we have a unique commodity at each state. We consider a financial structure \mathcal{F} with a nonempty finite collection of \mathcal{J} assets, represented by the payoff mapping
$p \rightarrow V(p)$ from $\mathbb{R}^{\mathbb{D}}$ to the set of $\not \mathbb{D}_{1} \times \mathcal{J}$ matrices. We assume that $p(\xi)>0$ for all $\xi \in \mathbb{D}$.

Let k be an asset whose payoffs are $\left(v_{k}(p, \xi)\right)_{\xi \in \mathbb{D}_{1}}$. We consider the financial structure $\tilde{\mathcal{F}}$ obtained by adding this new asset to the structure \mathcal{F} : the collection of assets of $\tilde{\mathcal{F}}$ is $\mathcal{J} \cup\{k\}$ and the $\sharp \mathcal{J}$ first columns of the payoff matrix $\tilde{V}(p)$ are the columns of the matrix $V(p)$ and the last column is the column of the payoffs of the asset k :

$$
\tilde{V}(p)=\left(\begin{array}{ll}
V(p) & \vdots \\
\left(v_{k}(p, \xi)\right)_{\xi \in \mathbb{D}_{1}}
\end{array}\right)
$$

1) Show that if $\tilde{q}=\left(\left(q_{j}\right)_{j \in \mathcal{J}}, q_{k}\right)$ is arbitrage free for the structure $\tilde{\mathcal{F}}$ at p, then the asset price $\left(q_{j}\right)_{j \in \mathcal{J}}$ is arbitrage free for the structure \mathcal{F} at p.
2) Show that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p if and only if the payoff vector $\left(v_{k}(p, \xi)\right)_{\xi \in \mathbb{D}_{1}}$ belongs to the range of $V(p)$.
3) Show that if q is an arbitrage free asset price for the structure V at p and the structures V and \tilde{V} are equivalent at p, then there exists a unique asset price q_{k} for the asset k such that $\tilde{q}=\left(q, q_{k}\right)$ is arbitrage free for the structure \tilde{V} at p.
4) Show that if the financial structure \mathcal{F} is complete at p, then \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p.

We assume now that there is no redundant asset for the financial structure \mathcal{F} at the price p.
5) Show that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p if and only if the financial structure $\tilde{\mathcal{F}}$ has a useless portfolio.

Exercise 3 We consider a two-period model with the uncertainty represented by the graph \mathbb{D}. $\mathbb{D}_{1}=\left\{\xi_{1}, \ldots, \xi_{K}\right\}$ is the set of states of nature at date 1 . We assume that we have a unique commodity at each state. We consider a financial structure \mathcal{F} with a nonempty finite collection $\mathcal{J}=\{1, \ldots, J\}$ of nominal assets defined as follows. Asset 1 has a positive payoff $v_{k}>0$ for all $\xi_{k} \in \mathbb{D}_{1}$. Then there exists $0<k_{1}<k_{2}<\ldots<k_{J-1}<K$ and the payoffs of Asset j at node ξ_{k} is 0 if $k \leq k_{j-1}$ and $v_{\xi_{k}}$ otherwise. So the payoff matrix is as follows:

$$
V=\left(\begin{array}{ccccc}
v_{1} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{k_{1}} & 0 & 0 & \cdots & 0 \\
v_{\left(k_{1}+1\right)} & v_{\left(k_{1}+1\right)} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{k_{2}} & v_{k_{2}} & 0 & \cdots & 0 \\
v_{\left(k_{2}+1\right)} & v_{\left(k_{2}+1\right)} & v_{\left(k_{2}+1\right)} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{k_{3}} & v_{k_{3}} & v_{k_{3}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{\left(k_{J-1}+1\right)} & v_{\left(k_{J-1}+1\right)} & v_{\left(k_{J-1}+1\right)} & \cdots & v_{\left(k_{J-1}+1\right)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{K} & v_{K} & v_{K} & \cdots & v_{K}
\end{array}\right)
$$

1) Show that the payoff matrix V of this financial structure is one-to-one.
2) Show that the set of no arbitrage asset prices is

$$
Q=\left\{q \in \mathbb{R}_{++}^{\mathcal{J}} \mid q_{1}>q_{2}>\ldots>q_{J}\right\}
$$

Hint: you can start by showing that $Q \subset\left\{q \in \mathbb{R}_{++}^{\mathcal{J}} \mid q_{1}>q_{2}>\ldots>q_{J}\right\}$ and then show the converse inclusion.
3) Show that the financial structure \mathcal{F} is complete if and only if $K=J$ and $k_{1}=1, k_{2}=2, \ldots, k_{J-1}=J-1$.
4) Show that the financial structure \mathcal{F} is equivalent to the financial structure $\tilde{\mathcal{F}}$ associated to the following payoff matrix:

$$
\tilde{V}=\left(\begin{array}{ccccc}
v_{1} & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{k_{1}} & 0 & 0 & \cdots & 0 \\
0 & v_{\left(k_{1}+1\right)} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & v_{k_{2}} & 0 & \cdots & 0 \\
0 & 0 & v_{\left(k_{2}+1\right)} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & v_{k_{3}} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & v_{\left(k_{J-1}+1\right)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & v_{K}
\end{array}\right)
$$

