Master MMMEF, 2020-2021 Crrection of the Final Exam on: General Equilibrium Theory: Economic analysis of financial markets December 2020

December 13, 2021

Q1) What is the definition of an Arrow Security?

A security which delivers one unit of account or the unit price of one commodity in one state and nothing in all other states.

Q2) What is the definition of a redundant asset?

An assets, the payoff vector of which is a linear combination of the payoff vectors of the other assets.

Q3) Under the assumption that $p(\xi) \neq 0$ for all $\xi \in \mathbb{D}$, provide a necessary and sufficient condition under which V(p) is complete.

V(p) is complete if and only if V(p) is onto.

Q4) Let (p,q) be a spot - asset price pair such that q is arbitrage free. How can we choose a price $\pi \in \mathbb{R}^{\mathbb{L}}$ such that the financial budget set $B^{\mathcal{F}}(p,q)$ is included in the Walrasian budget set $B^{W}(\pi, \pi \cdot e_i)$?

Let $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_1}$ a present value vector associated to q. The price π is then defined by $\pi(\xi_0) = p(\xi_0)$ and $\pi(\xi) = \lambda_{\xi} p(\xi)$ for all $\xi \in \mathbb{D}_1$.

Q5) What is the definition of the over hedging price of an asset for a given financial structure?

Let V(p) be the payoff matrix and q be the arbitrage free asset price. Then, the over hedging price of an asset with payoff vector $w \in \mathbb{R}^{\mathbb{D}_1}$ is the value of the following optimisation problem:

$$\begin{cases} \text{Minimise } q \cdot z \\ V(p)z \ge w \\ z \in \mathbb{R}^J \end{cases}$$

Exercise 1 We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . \mathbb{D}_1 , the set of states of nature at date 1, is equal to $\{\xi_1, \xi_2, \xi_3, \xi_4\}$. The financial structure is composed of two nominal assets with the following

payoff matrix:

$$V = \begin{pmatrix} 1 & 0\\ -1 & 2\\ 0 & 1\\ 2 & -1 \end{pmatrix}$$

- 1) Represent graphically in \mathbb{R}^2 the set Z^+ of portfolios z such that $Vz \ge 0$. See the associated picture.
- **2)** Show that q is an arbitrage free portfolio if and only if $q \cdot z > 0$ for all $z \in Z^+ \setminus \{0\}$.

If $q \cdot z > 0$ for all $z \in Z^+ \setminus \{0\}$, then q is arbitrage free since there is no portolio z such that $Vz \ge 0$, $q \cdot z \le 0$ with at least one strict inequality.

Conversely, we remark that for all $z \in Z^+ \setminus \{0\}$, $Vz \ge 0$ and $Vz \ne 0$ since V is one-to-one (injective. So, if there exists $\overline{z} \in Z^+$ such that $q \cdot \overline{z} \le 0$, then \overline{z} is an arbitrage opportunity. Hence, if q is arbitrage free, for all $z \in Z^+$, $q \cdot z > 0$. **3)** Represent graphically the set of arbitrage free portfolios.

See the associated picture where the cone of arbitrage free price is the interior of the red cone.

Exercise 2 We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . \mathbb{D}_1 is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure \mathcal{F} with a nonempty finite collection of \mathcal{J} assets, represented by the payoff mapping $p \to V(p)$ from $\mathbb{R}^{\mathbb{D}}$ to the set of $\sharp \mathbb{D}_1 \times \mathcal{J}$ matrices. We assume that $p(\xi) > 0$ for all $\xi \in \mathbb{D}$.

Let k be an asset whose payoffs are $(v_k(p,\xi))_{\xi\in\mathbb{D}_1}$. We consider the financial structure $\tilde{\mathcal{F}}$ obtained by adding this new asset to the structure \mathcal{F} : the collection of assets of $\tilde{\mathcal{F}}$ is $\mathcal{J} \cup \{k\}$ and the $\sharp \mathcal{J}$ first columns of the payoff matrix $\tilde{V}(p)$ are the columns of the matrix V(p) and the last column is the column of the payoffs of the asset k:

$$\tilde{V}(p) = \left(V(p) \quad \vdots \quad (v_k(p,\xi))_{\xi \in \mathbb{D}_1}\right)$$

1) Show that if $\tilde{q} = ((q_j)_{j \in \mathcal{J}}, q_k)$ is arbitrage free for the structure $\tilde{\mathcal{F}}$ at p, then the asset price $(q_j)_{j \in \mathcal{J}}$ is arbitrage free for the structure \mathcal{F} at p.

If $\tilde{q} = ((q_j)_{j \in \mathcal{J}}, q_k)$ is arbitrage free for the structure $\tilde{\mathcal{F}}$ at p, then there exists a present value vector $\lambda \in \mathbb{R}_{++}^{\mathbb{D}_1}$ such that $\tilde{V}(p)^t \lambda = \tilde{q}$. So, one deduces from the structure of the matrix $\tilde{V}(p)$ that $V(p)^t \lambda = q$, which implies that q is arbitrage free for the structure \mathcal{F} .

2) Show that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p if and only if the payoff vector $(v_k(p,\xi))_{\xi\in\mathbb{D}_1}$ belongs to the range of V(p).

Since $p(\xi) > 0$ for all $\xi \in \mathbb{D}$, \mathcal{F} and \mathcal{F} are equivalent if and only if the range of V(p) is equal to the range of $\tilde{V}(p)$. From the structure of $\tilde{V}(p)$, its range is equal to $\mathrm{Im}V(p) + \mathbb{R}v_k(p)$. So, $\mathrm{Im}\tilde{V}(p) = \mathrm{Im}V(p)$ if and only if $\mathrm{Im}V(p) = \mathrm{Im}V(p) + \mathbb{R}v_k(p)$, which holds true if and only if $v_k(p) \in \mathrm{Im}V(p)$.

3) Show that if q is an arbitrage free asset price for the structure V at p and the structures V and \tilde{V} are equivalent at p, then there exists a unique asset price q_k for the asset k such that $\tilde{q} = (q, q_k)$ is arbitrage free for the structure \tilde{V} at p.

Let q is an arbitrage free asset price for the structure V at p. Since V and \tilde{V} are equivalent at p, from the previous question $v_k(p) \in \text{Im}V(p)$, so there exists $\bar{z} \in \mathbb{R}^J$ such that $v_k(p) = V(p)\bar{z}$. If q_k is a price for the asset k such that $\tilde{q} = (q, q_k)$ is arbitrage free for the structure \tilde{V} at p, then q_k is the value of the portfolio \bar{z} , which replicates the payoffs of the asset k. Otherwise, an arbitrage opportunity exists by selling one unit of the asset k and buying the portfolio \bar{z} or the converse. So, the unique possible price $q_k = \bar{z} \cdot q$.

4) Show that if the financial structure \mathcal{F} is complete at p, then \mathcal{F} and $\dot{\mathcal{F}}$ are equivalent at p.

If the financial structure \mathcal{F} is complete at p, $\mathrm{Im}V(p) = \mathbb{R}^{\mathbb{D}_1}$ so necessarily $v_k(p) \in \mathrm{Im}V(p)$, which implies that \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p from question 2.

We assume now that there is no redundant asset for the financial structure \mathcal{F} at the price p.

5) Show that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p if and only if the financial structure $\tilde{\mathcal{F}}$ has a useless portfolio.

If \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at p, from Question 2, $v_k(p) \in \mathrm{Im}V(p)$, so there exists $\bar{z} \in \mathbb{R}^J$ such that $v_k(p) = V(p)\bar{z}$. We remark that (z, -1) is then a useless portfolio of $\tilde{\mathcal{F}}$.

If the financial structure $\tilde{\mathcal{F}}$ has a useless portfolio, there exists $\tilde{\zeta} \in \mathbb{R}^{J+1} \setminus \{0\}$ such that $\tilde{V}(p)\tilde{\zeta} = 0$. $\tilde{\zeta}_k \neq 0$. Indeed, if $\tilde{\zeta}_k = 0$, then $\tilde{V}(p)\tilde{\zeta} = V(p)\zeta = 0$ where ζ is obtained from $\tilde{\zeta}$ by removing the *k*th component. Furthermore $\zeta \neq 0$. So ζ is a useless portfolio of \mathcal{F} . But this is in contradiction with the fact that the financial structure \mathcal{F} at the price *p* has no redundant asset, which is equivalent to the absence of useless portfolio. Then, one deduces that $\tilde{\zeta}_k v_k(p) = -V(p)\zeta$, so $v_k(p) = -V(p)\frac{1}{\tilde{\zeta}_k}\zeta$. Hence, $v_k(p)$ belongs to the range of V(p) which implies that the financial structures \mathcal{F} and $\tilde{\mathcal{F}}$ are equivalent at *p* from Question 2.

Exercise 3 We consider a two-period model with the uncertainty represented by the graph \mathbb{D} . $\mathbb{D}_1 = \{\xi_1, \ldots, \xi_K\}$ is the set of states of nature at date 1. We assume that we have a unique commodity at each state. We consider a financial structure \mathcal{F} with a nonempty finite collection $\mathcal{J} = \{1, \ldots, J\}$ of nominal assets defined as follows. Asset 1 has a positive payoff $v_k > 0$ for all $\xi_k \in \mathbb{D}_1$. Then there exists $0 < k_1 < k_2 < \ldots < k_{J-1} < K$ and the payoffs of Asset j at node ξ_k is 0 if $k \leq k_{j-1}$ and v_{ξ_k} otherwise. So the payoff matrix is as follows:

	$\int v_1$	0	0		0)
	:	:	:	۰.	•
	v_{k_1}	0	0		0
	$v_{(k_1+1)}$	$v_{(k_1+1)}$	0		0
	÷	•		·	•
	v_{k_2}	v_{k_2}	0		0
V =	$v_{(k_2+1)}$	$v_{(k_2+1)}$	$v_{(k_2+1)}$		0
	÷			۰.	
	v_{k_3}	v_{k_3}	v_{k_3}		0
	÷	•		·	•
	$v_{(k_{J-1}+1)}$	$v_{(k_{J-1}+1)}$	$v_{(k_{J-1}+1)}$		$v_{(k_{J-1}+1)}$
	:			·	
	$\bigvee v_K$	v_K	v_K		v_K /

1) Show that the payoff matrix V of this financial structure is one-to-one.

Let $z \in \mathbb{R}^J$ such that Vz = 0. Then $v_1z_1 = 0$ which implies $z_1 = 0$ since $v_1 > 0$. One then deduces that $v_{(k_1+1)}(z_1 + z_2) = v_{(k_1+1)}z_2 = 0$ which implies $z_2 = 0$ since $v_{(k_1+1)} > 0$. Repeating the same argument for $k_2 + 1$ until $k_{J-1} + 1$, one deduces that $z_3 = 0, \ldots, z_j = 0$, so z = 0 which shows that V is one-to-one.

2) Show that the set of no arbitrage asset prices is

$$Q = \{ q \in \mathbb{R}_{++}^{\mathcal{J}} \mid q_1 > q_2 > \ldots > q_J \}$$

Hint: you can start by showing that $Q \subset \{q \in \mathbb{R}_{++}^{\mathcal{J}} \mid q_1 > q_2 > \ldots > q_J\}$ and then show the converse inclusion.

If q is an arbitrage free asset price, then there exists $\lambda \in \mathbb{R}_{++}^K$ such that $V^t \lambda = q$. Then, since all $v_k > 0$, $q_J = \sum_{k=k_{J-1}+1}^K \lambda_k v_k < q_{J-1} = \sum_{k=k_{J-2}+1}^K \lambda_k v_k < \ldots < q_2 = \sum_{k=k_1+1}^K \lambda_k v_k < q_1 = \sum_{k=1}^K \lambda_k v_k$.

Conversely, let q such that $q_1 > q_2 > \ldots > q_J > 0$. Then, let $\lambda \in \mathbb{R}_{++}^K$ defined as follows: for $k_{J-1} + 1 \le k \le K$, $\lambda_k = \frac{1}{K-k_{J-1}}q_J$, for $k_{J-2} + 1 \le k \le k_{J-1}$, $\lambda_k = \frac{1}{k_{J-1}-k_{J-2}}(q_{J-1}-q_J)$, and so on, for $k_1 + 1 \le k \le k_2$, $\lambda_k = \frac{1}{k_2-k_1}(q_3-q_2)$, and finally, for $1 \le k \le k_1$, $\lambda_k = \frac{1}{k_1}(q_2-q_1)$. Clearly λ has only positive components and one checks from q_J to q_1 that $V^t\lambda = q$, so q is arbitrage free.

3) Show that the financial structure \mathcal{F} is complete if and only if K = J and $k_1 = 1, k_2 = 2, ..., k_{J-1} = J - 1$.

The financial structure \mathcal{F} is complete if and only if the range of V is \mathbb{R}^K . So, V must have at least K columns. From the structure of V, since $0 < k_1 < k_2 < \ldots < k_{J-1} < K$, V has K columns if and only if there are K assets, V is a square matrix and $k_1 = 1, k_2 = 2, \ldots, k_K = K$.

4) Show that the financial structure \mathcal{F} is equivalent to the financial structure $\tilde{\mathcal{F}}$ associated to the following payoff matrix:

	$\int v_1$	0	0		0 \
	:	:	÷	۰.	:
	v_{k_1}	0	0		0
	0	$v_{(k_1+1)}$	0		0
	:	÷	÷	۰.	:
	0	v_{k_2}	0		0
$\tilde{V} =$	0	0	$v_{(k_2+1)}$		0
	:	:	÷	۰.	:
	0	0	v_{k_3}		0
	:	:	÷	۰.	:
	0	0	0		$v_{(k_{J-1}+1)}$
	:	:	÷	۰.	:
	$\int 0$	0	0		v_K /

Let (v^1, \ldots, v^J) be the column vectors of V and (w^1, \ldots, w^J) be the column vectors of \tilde{V} . We remark that $v^J = w^J$, $v^{J-1} = W^J + W^{J-1}, \ldots, V^2 = \sum_{k=2}^J W^k$ and $V^1 = \sum_{k=1}^J W^k$. So, the range of V spanned by the column vectors (v^1, \ldots, v^J) is a subset of the range of W spanned by the column vectors (w^1, \ldots, w^J) . But, since V is one-to-one, the range of V is of dimension J and the range of W is of dimension at most J. So, one conclude that the dimension of the two spaces is equal to J and that they are equal. So, \mathcal{F} is equivalent to the financial structure $\tilde{\mathcal{F}}$.

