Economic analysis of financial market S1 2023-2024

J.-M. Bonnisseau

Arrow securities and general financial structures

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQで

Pure spot market equilibrium

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

A new market organization

Spot markets at each node ξ where the current commodities are traded at a spot price $p(\xi) \in \mathbb{R}^{\ell}$. This means that the paiements are made at the node ξ and not at date 0 as for the contingent commodities.

Financial market at the initial node ξ_0 , a financial market is open where Arrow securities are traded.

Definition of the Arrow securities

An Arrow security j^{ξ} is associated to a node $\xi \in \mathbb{D}^+(\xi_0) = \mathbb{D} \setminus \{\xi_0\}$. It is a contract signed at date ξ_0 with a paiement at this date which promised to deliver one unit of unit of account at the node ξ if this node prevails and nothing otherwise.

< □ > < 同 > < 三 > <

Agent's behaviour

In this model, the agent *i* chooses a consumption $x_i \in X_i$ as previously but also a portfolio $z_i \in \mathbb{R}^{\mathbb{D}^+(\xi_0)}$. $|z_i(\xi)|$ is the quantity of the asset j^{ξ} sold $(z_i(\xi) < 0)$ or bought $(z_i(\xi) > 0)$ on the financial market at date 0.

イロト イポト イヨト イヨト

Budget constraints

At node ξ_0 , the budget constraint is :

$$p(\xi_0) \cdot x_i(\xi_0) + q \cdot z_i \leq p(\xi_0) \cdot e_i(\xi_0)$$

At each node $\xi \in \mathbb{D}^+(\xi_0)$, the budget constraint is

$$p(\xi) \cdot x_i(\xi) \leq p(\xi) \cdot e_i(\xi) + z_i(\xi)$$

So, at the global level, the budget set of the agent is $B_i^A(p, q, e_i)$ defined by :

$$\left\{ \left. x_i \in X_i
ight| egin{array}{ll} egin{array}{c} p(\xi_0) \cdot x_i(\xi_0) + q \cdot z_i \leq p(\xi_0) \cdot e_i(\xi_0) \ p(\xi) \cdot x_i(\xi) \leq p(\xi) \cdot e_i(\xi) + z_i(\xi) \ orall \xi \in \mathbb{D}^+(\xi_0) \end{array}
ight.
ight\}$$

Arrow financial equilibrium

Definition

A Arrow financial equilibrium

$$((x_i^*, z_i^*), \boldsymbol{p}^*, \boldsymbol{q}^*) \in (\mathbb{R}^{\mathbb{L}} \times \mathbb{R}^{\mathbb{D}^+(\xi_0)})^{\mathcal{I}} \times \mathbb{R}^{\mathbb{L}} \times \mathbb{R}^{\mathbb{D}^+(\xi_0)}$$

such that (a) [Preference maximization] for every $i \in \mathcal{I}$, (x_i^*, z_i^*) is a "maximal" element of u_i in the budget set $B_i^A(p^*, q^*, e_i)$ in the sense that

$$\left(egin{array}{c} p^*(\xi_0)\cdot x_i^*(\xi_0)+q^*\cdot z_i^*\leq p^*(\xi_0)\cdot e_i(\xi_0)\ p^*(\xi)\cdot x_i^*(\xi)\leq p^*(\xi)\cdot e_i(\xi)+z_i^*(\xi), &orall \xi\in \mathbb{D}^+(\xi_0) \end{array}
ight.$$

and

$$B_i^A(p^*,q^*,e_i) \cap \{x_i \in X_i \mid u_i(x_i) > u_i(x_i^*)\} = \emptyset;$$

Definition continued

Definition

(b) [Market clearing conditions on the spot markets]

$$\sum_{i\in\mathcal{I}}x_i^*=\sum_{i\in\mathcal{I}}e_i$$

(c) [Market clearing conditions on the financial market]

$$\sum_{i\in\mathcal{I}} z_i^* = \mathbf{0}.$$

Arrow securities

Pure spot market equilibrium

No-arbitrage with Arrow securities

Proposition

Under Assumptions C and NSS, if $((x_i^*, z_i^*), p^*, q^*)$ is a Arrow financial equilibrium, then $q_{i\xi}^* > 0$ for all $\xi \in \mathbb{D}^+(\xi_0)$.

イロト イポト イヨト イヨト 一臣

Arrow securities

Pure spot market equilibrium

Arrow financial equilibrium and CC equilibrium

Proposition

We consider an exchange economy satisfying Assumptions C and NSS.

Let $((x_i^*, z_i^*), p^*, q^*)$ be a Arrow financial equilibrium. Let \tilde{p}^* defined by $\tilde{p}^*(\xi_0) = p^*(\xi_0)$ and for all $\xi \in \mathbb{D}^+(\xi_0)$, $\tilde{p}^*(\xi) = q_{j\xi}^* p^*(\xi)$. Then, for all $i \in \mathcal{I}$, $B_i^A(p^*, q^*, e_i) \subset B_i^W(\tilde{p}^*, \tilde{p}^* \cdot e_i)$.

Consequently, $((x_i^*), \tilde{p}^*)$ is a contingent commodity equilibrium.

<ロ> <問> <問> < E> < E> < E> < E

Proposition continued

Conversely, let $((x_i^*), \bar{p}^*)$ be a contingent commodity equilibrium, let \bar{q}^* be the asset price such that $\bar{q}^*(\xi) = 1$ for all $\xi \in \mathbb{D}^+(\xi_0)$ and for all $i \in \mathcal{I}, z_i^*$ be the portfolio defined by $z_i^*(\xi) = \bar{p}^*(\xi) \cdot (x_i^*(\xi) - e_i(\xi))$ for all $\xi \in \mathbb{D}^+(\xi_0)$. Then, for all $i \in \mathcal{I}, B_i^W(\tilde{p}^*, \tilde{p}^* \cdot e_i) \subset B_i^A(p^*, q^*, e_i)$.

Consequently, $((x_i^*, z_i^*), \bar{p}^*, \bar{q}^*)$ is a Arrow financial equilibrium.

イロト イポト イヨト イヨト 一日

Necessity of a complete set of Arrow securities

For example, let us consider the simplest tree \mathbb{D} with T = 1 and just one node ξ_0 at date 0 and one, ξ_1 at date 1. We also assume that there is just one commodity per date, $\ell = 1$. Then, we have two agents $\mathcal{I} = \{1, 2\}$ having the identical preferences on \mathbb{R}^2_+ defined by $u(x_0, x_1) = x_0 x_1$ and initial endowments $e_1 = (2, 1)$ and $e_2 = (1, 2)$. Then if the unique Arrow security is missing, we have only two spot markets.

(日) (四) (日) (日) (日)

Payoff expressed in terms of a numéraire

The return of the Arrow securities can be expressed in real terms of the value or a numéraire commodity or a numéraire commodity basket. For example, if a commodity h is chosen as numéraire or if a numéraire commodity basket $\nu \in \mathbb{R}_{++}^{\ell}$ is chosen, then the return of one unit of the Arrow security j^{ξ} at node ξ is equal to $p_h(\xi)$ or $p(\xi) \cdot \nu$. Then the budget constraints become $p(\xi) \cdot x_i(\xi) \leq p(\xi) \cdot e_i(\xi) + p_h(\xi)z_i(\xi)$ or $p(\xi) \cdot x_i(\xi) \leq p(\xi) \cdot e_i(\xi) + (p(\xi) \cdot \nu)z_i(\xi)$.

The equivalence results holds true if the value of the numéraire basket $p^*(\xi) \cdot \nu$ are positive at every node $\xi \in \mathbb{D}^+(\xi_0)$.

Link with the financial literature

 $\ell = 1$ at each node, Spot price $p(\xi) = 1$ on each spot market. Let us consider a risk neutral consumer *i* with a discounted expected utility *u* defined by :

$$u_i(x_i) = \sum_{t=0}^T \beta^t \sum_{\xi \in \mathbb{D}_t} \pi_t(\xi) x_i(\xi)$$

< ロ > < 同 > < 臣 > < 臣 > -

Interpretation of the asset price

Assume that the Arrow financial equilibrium allocation x_i^* of this consumer is an interior condition. Then the first order optimality conditions tell us that there exists multipliers such that :

(i) $\lambda_{\xi} = \beta^t \pi_t(\xi)$ item(ii) $\lambda_{\xi} = \lambda_{\xi_0} \boldsymbol{q}_{i\xi}^*$ for all $\xi \in \mathbb{D}_t$.

So $\beta^t \pi_t(\xi) = \lambda_{\xi_0} q_{j\xi}^*$. Note that $q_{j\xi}^*$ is cost paid at ξ_0 to have one additional unit of wealth at node ξ or in other words is the price at date 0 of a unit of wealth at node ξ .

・ロン・西方・ ・ ヨン・ ヨン・

Interest rate

To have one additional unit of wealth at all nodes of date *t*, the cost is $\sum_{\xi \in \mathbb{D}_t} q_{j\xi}^*$. Since $(\pi_t(\xi))$ is a probability on \mathbb{D}_t , the total price is β^t at date 0. So in terms of interest rate *r*, we note that the return at date *t* of a paiement of β^t at date 0 is $\beta^t(1+r)^t = 1$, or, in other words, $\beta = \frac{1}{1+r}$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Risk neutral probability

Now we remark that the discounted price process on the final states \mathbb{D}_T , $(\frac{1}{\beta^T}q_{j\xi}^* = (1+r)^T q_{j\xi}^*)_{\xi \in \mathbb{D}_T}$ defined a "risk-neutral" probability measure on the final states and $(\frac{1}{\beta^T}q_{j\xi}^* = (1+r)^t q_{j\xi}^*)_{\xi \in \mathbb{D}_t}$ is the conditional probability on the states at date *t*. These are the usual assumptions on a price process in a standard financial model.

イロト イポト イヨト イヨト

Pure spot market economy

No financial market, only pure spot markets

Budget constraints

$$p(\xi) \cdot x_i(\xi) \leq p(\xi) \cdot e_i(\xi), \quad \forall \xi \in \mathbb{D}$$

Remark

If $\ell = 1$ and $p^*(\xi) > 0$ for all ξ , then the unique pure spot equilibrium is the autarky equilibrium $x_i^* = e_i$ for all *i*.

Existence of pure spot market equilibrium

Remark

Note that the above assumptions *C*, *S* and NSS are sufficient to guarantee the existence of a pure spot market equilibrium. It suffices to adapt the proof of a standard Competitive equilibrium checking that the budget sets have a closed graph and are lower semicontinuous which implies that the quasi-demands are upper semicontinuous if we truncate in a suitable way the consumption sets. Then, the step from a quasi-equilibrium to an equilibrium is obtained thanks to the survival assumption and the non satiation at each state.