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1 Logic

1.1 Symbolic logic

Exercise 1.1. Let p be “it is cold” and q “it is raining”. Give a simple verbal
sentence which describes each of the following propositions:

1. ¬p
2. p ∧ q

3. p ∨ q

4. p ↔ q

5. p → ¬q

6. q ∨ ¬p

7. ¬p ∧ ¬q

8. p ↔ ¬q

9. (p ∧ ¬q) → p

Exercise 1.2. Let p be “He is tall” and let q be “He is bright”, write each of the
following statements in symbolic form using p and q.

1. He is tall and bright

2. He is bright and short

3. It is false that he is bright or short

4. He is tall, or he is short and bright

Exercise 1.3. Let p be “it is raining”, q be “it is going to rain” and r be “one
can see the heaven”. Give a simple verbal statement which describe the following
proposition:

(r → q) ∧ (¬r → p).

Exercise 1.4. Determine the truth value of each of the following propositions:

1. If 3 + 2 = 7 then 4 + 4 = 8

2. It is not true that 2 + 2 = 5 if and only if 4 + 4 = 10

3. Paris is in England or Venezia is not in Italy.

4. It is not true that, 1 + 1 = 3 or 2 + 1 = 3

5. It is false that (if Paris is in England then London is in France).
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Exercise 1.5. Determine the negation of each of the following propositions:

1. He is tall and handsome

2. He is not rich and not happy (He is neither rich nor happy).

3. If she comes, she will talk to you.

4. Mark is rich or Eric is poor.

5. If Marc is sad, then both Marie and Jean are happy

6. Eric is handsome if and only if Marie is intelligent.

Exercise 1.6. 1) Find the truth table of each of the following proposition.
2) Determine their negation.

1. ¬(p) ∧ q

2. ¬(q) → ¬(p)
3. (p ∧ q) → (p ∨ q)

4. ¬(p ∧ q) ∨ ¬(p ↔ q)

5. (¬(p ∧ q) → r) → (q ∧ r)

1.2 First-order logic

Exercise 1.7. Translate in English (or in Mathematics) the following formula

1. ∃x ∈ R, ∀y ∈ R, x ≥ y

2. ∃x ∈ R, ∃y ∈ R, x ≥ y

3. For all integer, there exists a real number whose square is smaller than itself.

4. There exists no integer that is smaller than 20.

Exercise 1.8. Determine the truth value of each of the following statements :

1. ∀x ∈ {1, 2, 4, 5}, x+ 2 ∈ {3, 4, 7, 8},
2. ∃x ∈ {1, 2, 4, 5}, x+ 2 ∈ {3, 4, 7, 8},
3. ∃x ∈ R, x2 − 2x+ 1 = 0

4. ∀x ∈ R, |x| = x

5. ∀x ∈ R+, |x| = x

6. ∀x ∈ R, ∃n ∈ N, n > x and same question for ∀x ∈ R∗
+, ∃n ∈ N, 1

n
< x

7. ∀x ∈ R, ∃y ∈ R, y = x2,

8. ∀x ∈ R, ∃y ∈ R, x2 = y,

9. ∃y ∈ R, ∀x ∈ R, x2 = y,

10. ∀x ∈ R, ∀y ∈ R, (x < y) → (∃z ∈ R, x < z < y),

11. ∃t ∈ R, ∀x ∈ R−, x < t.
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Exercise 1.9. Determine the negation of each of the following proposition:

1. Every human being is smart or tall.

2. If there exists a human being smart and tall then there exists a tree blue or
red.

3. If a blue dog exists then the world has a beginning or an end.

4. Everything that has a beginning has an end

Exercise 1.10. Determine the negation of the following propositions

1. ∀x ∈ R, ∃y ∈ R, ∀z ∈ R, (x ∈ [y, z] or z ∈ [x, y]),

2. ∃x ∈ R, ∃n ∈ N, ∀z ∈ R, (z ≥ n → x ≤ z),

3. For every real number x, there exists y a real number such that x ≤ y or
there exists a natural number z such that x ≥ z.

4. ∀x ∈ R, ∃z ∈ N such that z < x implies that for all y ∈ Z, z < y.

5. ∀n ∈ {1, 2, 3}, ∀m ∈ {3, 4, 5}, nm < 3

Exercise 1.11. Let p(x, y, z) be a predicate on R×R×R, determine the logical
relations between the following propositions:

1. ∀x ∈ R ∀y ∈ R ∃z ∈ R p(x, y, z),

2. ∃z ∈ R ∀x ∈ R ∀y ∈ R p(x, y, z),

3. ∀y ∈ R ∀x ∈ R ∃z ∈ R p(x, y, z),

4. ∀x ∈ R ∃z ∈ R ∀y ∈ R p(x, y, z).

Exercise 1.12. A function f on an interval I is uniformly continuous on I if
there exists

∀ε > 0, ∃δ > 0, ∀x ∈ I, ∀y ∈ I∩]x− δ, x+ δ[, |f(x)− f(y)| ≤ ε.

1. Recall the definition of f being continuous on I.

2. Explain the difference between the two definitions.

3. Does one notion imply the other?
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2 Reasoning in mathematics

2.1 Basic proof

Exercise 2.1. Write for each of the following statements:

1. A conditional/universal proof

(a) for all real numbers (x+ 1)3 = x3 + 3x2 + 3x+ 1,

(b) for all natural numbers x, x− 1 divides x3 − 1,

2. An existential proof

(a) there exists an integer such that x2 − 2x+ 1 = 0,

(b) there exists a real number y such that y2 = 4.

3. A counterexample (that shows the statement is false)

(a) Every integer is divisible by 4

(b) For every real number x, there exists a real number y such that

y2 ≤ x.

4. A proof by contrapositive

(a) Let a, b, n ∈ N, if n does not divide (ab) then n does not divide a and
does not divide b.

(b) Let x ∈ N, if x2 − 6x+ 5 is even then x is odd.

5. A proof by contradiction that

(a) If n2 is even, then n is even.

(b)
√
2 is not a rational number1.

Exercise 2.2. Proof the following statements:

1. Let n be an integer. n2 is even if and only if n is even.

2. Let n be an integer, then n3 is either divisible by 9, 1 more or 1 less than an
integer divisible by 9.

3. For every positive real number, |x+ 2| − |x− 2| > 0.

1We admit that x is a positive rational number if there exists p, q ∈ N∗ such that x = p

q
while p and q have

only 1 as a common divisor

5



Exercise 2.3. We will now make some proof on sequence and convergence: recall
that (un)n≥1 converges to l ∈ R if

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, |un − l| ≤ ε,

1. Prove that (2un)n≥1 converges to 2l,

2. Let (vn)n≥1 that converges to k. Define for every n ≥ 1, wm = vn + un.
Prove that the sequence (wn)n≥1 converges to k + l by using that for every
n ≥ 1,

|wn − (l + k)| = |vn − k + un − l| ≤ |vn − k|+ |un − l|.

2.2 Induction

Exercise 2.4. q
Show by induction that for all n ∈ N,

1.
∑n

t=1 t
2 = 1 + 22 + 32 + ... + n2 = n(n+1)(2n+1)

6
.

2.
∑n

t=1(2t− 1) = 1 + 3 + 5 + ...+ (2n− 1) = n2,

3. n(n2 + 5) is a multiple of 6.

Exercise 2.5. q
Define the sequence (un)n∈N by u0 = 0 and ∀n ∈ N, un+1 =

√
un + 2.

1. Show that the sequence is bounded by above by 2.

2. Deduce that the sequence is increasing.

3. Conclude.

Exercise 2.6. q

• Recall that a natural number n is a prime number if it has two divisors 1
and n. (1 is not a prime number).

• Using the strong principle of induction, show that every number n has a
prime divisor.
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3 Set theory

3.1 Sets

Exercise 3.1. For each of the following statement say if it is True or False.

1. John ∈ {John,Marc},
2. Julie ∈ {John,Marc},
3. {1, 2} ⊂ {1, 2},
4. The function θ → cos(θ) belongs to the set of functions {θ → a cos(θ) +

b sin(θ) : a, b ∈ R},
5. {1, 3} ⊂ {x, (x− 1)(x− 2)(x− 4) = 0},
6. 7 ∈ {x ∈ R, x2 − 5x− 14 = 0}.
7. {1} ⊂ {1, 2, 3}

Exercise 3.2. 1. Let A = {1, 2, 3, 4}, B = {2, 4, 6, 8}, and C = {3, 4, 5, 6}.
Compute the following sets

(a) A ∪ B,

(b) B ∪ C,

(c) A ∩ B,

(d) A ∩ B ∩ C.

(e) A− B,

(f) B − C.

2. Same question with A = {V ictor, P ierre, Luc}, B = {V ictor, Jean, Eric},
and C = {Marc, Eric, Alain}.

Exercise 3.3. Compute the following sets.

1. {1, 2, 3, 4} ∩ {x ∈ N | x is a multiple of 2} = ?

2. {x ∈ N | x ≤ 40} ∩ ({x ∈ N | x is a multiple of 3} ∩ {x ∈ N |
x is a multiple of 4}) = ?

Exercise 3.4.

1. What is the complement of {a, b, c} in the set of letters of the Latin alphabet?

2. What is the complement of the set of positive odd numbers in the set of
positive integers?

3. What is the complement of the set of positive odd numbers in the set of all
integers?

Exercise 3.5. Let A,B,C be three sets. Suppose that A ⊂ B, B ⊂ C and
C ⊂ A. Show that A = B = C.
Exercise 3.6. Let A,B be two sets. Prove the following results

• (A ∪ B)c = Ac ∩Bc,

• (A ∩ B)c = Ac ∪Bc.
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3.2 Operations on sets

Exercise 3.7. Let A and B be two sets. Prove the following results

1. A ⊂ A ∪ B.

2. B ⊂ A ∪ B.

3. If A ⊂ B then A ∪B = B.

4. A ∪ B = B ∪A.

5. ∅ ∪ A = A.

6. A ∪ B = ∅ implies A = ∅ and B = ∅.
Exercise 3.8. Let A and B be two sets. Prove the following results

1. A ∩ B ⊂ A.

2. A ∩ B ⊂ B.

3. A ∩ ∅ = ∅.
4. A ∩ B = B ∩A.

5. If A ⊂ B then A ∩B = A.

Exercise 3.9. Let A and B be two sets. Prove the following results

1. (A− B) ∩ B = ∅.
2. (A− B) ∩ (B − A) = ∅.
3. (A− B) ∩ (A ∩ B) = ∅.
4. (A− B) = (B − A) if and only if A = B.

Exercise 3.10. Let A and B be two sets. Prove that Ac −Bc = B −A.

3.3 Family of sets

Exercise 3.11. Tell if the following statements are true or false

1. {1, 2} ∈ {1, 2},
2. {1} ∈ {1, {1}},
3. {1} ⊂ {1, {1}},
4. {∅} is empty,

5. {1} ∈ N,

6. ∅ ∈ ∅,

7. ∅ ⊂ ∅.
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Exercise 3.12. Let Ω = {1, 2}. Tell if the following statements are true or false:

1. {{1}} ∈ P(Ω),

2. {{1}} ⊂ P(Ω),

3. {1} ∈ P(Ω),

4. {1} ⊂ P(Ω),

5. {1} ∈ Ω,

6. {1} ⊂ Ω,

Exercise 3.13. Let Ω = {a, b, c, d}. We consider the following family of P(Ω):

F = {∅, {a, b}, {c, d},Ω}.

1. Is F stable by complements?

2. Does it contain the empty set?

3. Is it stable by union 2?

Exercise 3.14. Let (Ai)i∈I be a family of sets. Prove the following results

1. (∪i∈IAi)
c = ∩i∈IA

c
i ,

2. (∩i∈IAi)
c = ∪i∈IA

c
i ,

3.4 Cartesian product

Exercise 3.15. We want to study how the Cartesian product and the union
behave together.

1. Let A = [1, 3], A′ = [2, 4], B = [0, 2] and B′ = [1, 3].

(a) Draw A×B, A′ × B′.

(b) Draw (A ∪ A′)× (B ∪ B′).

(c) Compare (A× B) ∪ (A′ × B′) and (A ∪A′)× (B ∪ B′).

2. Let A,A′, B, B′ be 4 sets. Prove that

(A×B) ∪ (A′ ×B′) ⊂ (A ∪A′)× (B ∪ B′).

3. Find A,A′, B and B′ such that the previous inclusion is strict (no equality).

Exercise 3.16. We want to study how the Cartesian product and the intersection
behave together.

1. Let A = [1, 3], A′ = [2, 4], B = [0, 2] and B′ = [1, 3].

(a) Draw (A ∩ A′)× (B ∩ B′).

(b) Compare (A× B) ∩ (A′ × B′) and (A ∩A′)× (B ∩ B′).

2. Let A,A′, B, B′ be 4 sets. Prove that

(A× B) ∩ (A′ × B′) = (A ∩A′)× (B ∩B′).
2considering a union of elements in the family is still in the set

9



4 Functions

• In this section, we consider two sets X and Y and a mapping f : X → Y .

• The sets A1, A2 and A are subsets of X and the sets B1, B2 and B are
subsets of Y.

Exercise 4.1. 1. If A1 ⊂ A2 show that f(A1) ⊂ f(A2).

2. Show that f(A1 ∪ A2) = f(A1) ∪ f(A2).

3. Show that f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2). and give an example showing that
the equality may not hold.

Exercise 4.2. 1. If B1 ⊂ B2 show that f−1(B1) ⊂ f−1(B2).

2. Show that f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).

3. Show that f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

Exercise 4.3. 1. Show that f−1(Y \B) = X \ (f−1(B)) .

2. Is it true that f(X \ A) = Y \ (f(A))?

Exercise 4.4. 1. Show that f(f−1(B)) ⊆ B and that the equality may not
hold.

2. Show that A ⊆ f−1(f(A)) and that the equality may not hold.

Exercise 4.5. Show that (f|A)
−1(B) = A ∩ f−1(B).

4.1 Injection, surjection and bijection

Exercise 4.6. Give an example of a mapping which is:

1. injective and surjective.

2. injective but not surjective.

3. Not injective but surjective.

4. Not injective and not surjective.

Exercise 4.7. Let A, B, C be three sets and f : A → B, g : B → C be two
mappings. Show that:

1. g ◦ f injective implies f injective.

2. g ◦ f surjective implies g surjective.
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Exercise 4.8. Let X , Y be two sets and f : X → Y , g : Y → X be two mappings
such that g ◦ f = idX (the identity mapping of X). Show that:

1. f is injective and g is surjective.

2. f may not be surjective and g may not be injective.

Exercise 4.9. Let E, F , G be three sets and f : E → F, g : F → G be two
bijective mappings. Show that g ◦ f : E → G is bijective and that (g ◦ f)−1 =
f−1 ◦ g−1.
Exercise 4.10. Let X1, X2 be two sets and π1 : X1×X2 → X1 be the projection
mapping on the first coordinate defined by π1(x1, x2) = x1. Show that:

1. π1 is surjective.

2. π1 may not be injective.

Exercise 4.11. Let X and Y be two sets and f : X → Y be a mapping. For
every y ∈ Y , what can we say of the sets f−1({y}) when f is surjective, injective,
bijective?
Exercise 4.12.

1. If f is surjective, show that f(f−1(B)) = B.

2. If f is injective, show that A = f−1(f(A)).
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5 Relations

5.1 Basic properties

Exercise 5.1. Let Ω = {2, 3, 4, 5, 10} and the following relation

aRb if and only if a ≤ b < a2.

• Represent this relation with a table and a diagram.

• Is it reflexive? transitive? symmetric? anti-symmetric?

Exercise 5.2. Are the following relations reflexive? transitive? symmetric?
anti-symmetric?

1. On N∗ × N∗ aRb if and only if a divides b

2. On 2E, the inclusion relation between subsets.

3. On R× R the relation xRy if and only if |x| = |y|
4. On 2E the relation ARB if and only if A ∩ B = ∅
5. On R2 the relation (xRy iff u(x) > u(y)) where u : R → R is a function.

6. On R2 the relation (xRy iff u(x) ≥ u(y)) where u : R → R is a function.

7. On (Z× N− {0})2 the relation (a, b)R(c, d) if and only if ad− bc = 0

Exercise 5.3.

• Which of the preceding relations are equivalence relations ? Order relations
?

• Give a characterization of an equivalence relation (resp. order relation) in
terms of its graph.

5.2 Equivalence relation

Exercise 5.4. Find all partitions of the following sets:

1. U = {John,Elsa},
2. S = {a, b, c}.

Exercise 5.5. Consider the set of words W = {sheet, last, sky, wash, winf, sit}.
Find W/R where R is the following equivalence relation

1. “has the same number of letters”,

2. “begins with the same letter”.

Exercise 5.6. (Theorem 11) Let E be a set, prove that Π is a partition of E
if and only if there exists an equivalence relation such that Π = {R(x)} where
R(x) is the equivalence class of x for R.
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5.3 Order relation

Exercise 5.7.

1. Let u : X → R be a utility function and �u be the preference relation
associated with u, that is, x �u y if and only if u(x) ≤ u(y).
Show that �u is a complete preorder.

2. Let f : R → R be an increasing function and define v : X → R by v(x) =
f(u(x)).

(a) Show that �u and �v define the same relation: x �u y iff x �v y.

(b) Give a counterexample if f is not increasing.

3. Give an example of an order relation that can not be written as �u for some
u.

Exercise 5.8. We consider the set R2 and define two different relations on R2.

1. For every x = (x1, x2) and y = (y1, y2) in R2:

x ≥ y if (x1 ≥ y1 and x2 ≥ y2).

(a) Show that ≥ is an order on R2.

(b) Show that the order ≥ is not complete.

2. For every x = (x1, x2) and y = (y1, y2) in X2:

x �L y if (x1 < y1) or (x1 = y1 and x2 ≤ y2).

(a) Show that ≥ is a complete order on X2.

(b) It is called the lexicographic order. Justify this name.

Exercise 5.9. Do the following subsets have a greatest lower bound ? A least
upper bound ? A minimum ? A maximum?

· Subsets of R :

1. ]0, 1[

2. ∪n∈N{−n}
3. [0, 1]

4. { 1
n
}n∈N−{0}

5. { 1
x
}x∈R−{0}

· Subsets of Q

1. {x ∈ Q | x > 0} 2. {x ∈ Q | x > π}

Exercise 5.10. q Let A and B be two subsets of R such that A is bounded by
above, B is bounded by above and A ∩ B 6= ∅.
1. Prove that A ∩B and A ∪ B are bounded by above.

2. Compare sup(A ∪B), sup(A ∩B) and max{sup(A), sup(B)}.
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6 Cardinality

Exercise 6.1. Construct a bijection between the following sets

1. [0, π] and [−1, 1],

2. (0,+∞) and R,

3. [0, 1) and (0, 1],

4. (0, 1) and (0, 1).

5. N and Z−,

6. the set of prime number and N.

Exercise 6.2. Prove that R and C have the same cardinality.
Exercise 6.3. Given two sets A and B, we denote by A ≈ B that A and B have
the same cardinality. Prove that

1. if A ≈ B and B ≈ C then A ≈ C,

2. if A ≈ B and C ≈ D then A× C ≈ C ×D.

Exercise 6.4. Tell if the following sets are countable or uncountable:

1. R∗,

2. R2,

3. N,

4. N10,

5. Q,

6. (hard) NN.
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7 Annals

7.1 Midterms (October 2015)

Exercise 7.1. (11 points)
Let A, B, C and D be four sets. Let p, q and r be three propositions. Let
P (., .) be a predicate on R× R. For each of the following statements, say if it is
TRUE or FALSE. (+0.5 if your answer is correct, -0.5 if your answer is wrong, 0
otherwise.)

1. If (Paris is on mars) then (London is in England).

2. (A unicorn exists) if and only if (2+2=5).

3. The negation of p → q is ¬p ∧ q.

4. The negation of ((p ∧ q) ↔ r) is (¬p ∨ ¬q) ↔ ¬r.
5. The negation of “(Marc and Julie are tall) or Sam is small” is “Sam is tall

and (Marc or Julie is small)”.

6. The negation of “If it is raining then everybody is sad” is “If it is raining
then everybody is happy”.

7. The contrapositive of p → q is ¬q → ¬p.
8. (p ∨ q) ∧ r ⇔ (p ∧ r) ∨ (q ∧ r).

9. ∀x ∈ R+, ∃y ∈ R, x = y2.

10. ∃y ∈ R, ∀x ∈ R+, x = y2.

11. ∀y ∈ R, ∃x ∈ R, x = y2.

12. The negation of “∀x ∈ R, ∃y ∈ R, P (x, y)” is “∃x ∈ R, ∀y ∈ R,¬P (x, y)”.

13. {1, 2, 3} ⊂ ∅.
14. {2} ∈ {1, {2}}.
15. {2} ⊆ {1, {2}}.
16. For all f : A → B and all C,D ⊆ A, f(C ∩D) = f(C) ∩ f(D).

17. For all f : A → B and all C,D ⊆ A, f(C ∪D) = f(C) ∪ f(D).

18. (A ∪ B) ⊆ (A ∩ B)

19. A ∪ (B ∩ C) = (A ∪ B) ∩ C.

20. ∅ ∈ P(∅).

21.
⋂

C∈{∅,{1,2},{1}}

C = {1}.
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22.
⋃

C∈{∅,{1,2},{{1}}}

C = {1, 2}.

Exercise 7.2. (4 points)
Given two propositions p and q, we define the proposition p⊕ q, called exclusive
disjunction, with the following truth table:

p q p⊕ q

T T F
T F T
F T T
F F F

1. Write the truth table of (¬p ∧ q) ∨ (¬q ∧ p). What do you observe?

2. Check that;

(a) (p⊕ T ) ↔ (¬p) is a tautology.

(b) (p⊕ p) ↔ F is a tautology.

3. Use the operator ⊕ in order to give a new definition of A∆B where A and
B are two sets.

4. Find a proposition equivalent to p∨q using only ⊕ and ∧ (try first with ⊕,∧
and ¬).

Exercise 7.3. (5 points)

1. Let A and B be two sets. Prove the following propositions from the defini-
tions:

(a) B ⊂ A ∪ B.

(b) If A ⊂ B then f(A) ⊂ f(B) for a function f from C to D such that
A,B ⊂ C.

2. Given three sets A, B and C. We define the following set

[A,B,C] = {x ∈ A ∪ B ∪ C, ∃y ∈ {A,B,C}, x /∈ y}

(a) Draw on a picture this set for three generic sets A, B and C (such that
any intersection is non-trivial).

(b) Express this set with usual symbol: ∩, ∪, and \ (bonus if proof).

3. Compare (A \ A) \ A and A \ (A \A). Is the \ operation commutative?
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7.2 Exam (December 2015)

Exercise 7.4. (10 points)
Let A, B and C be three set. Let p, q and r be three propositions. Let f , g and
h be three functions. For each of the following statements write on the left if it
is TRUE or FALSE.

1. The negation of (p ∨ q) ∧ r is (¬p ∨ ¬r) ∧ (¬q ∨ ¬r).
2. The negation of p → q is p ∧ ¬q.
3. The contrapositive of: “If it is not raining, we will go to the beach” is “If

we go to the beach, it is not raining”.

4. ∀x ∈ R, ∃y ∈ R, x = ey.

5. ∃y ∈ R, ∀x ∈ R, x = ey.

6. Let X = {1, {2}} and Y = {1, {1, {2}}}, X ∈ Y.

7. ∅ ⊆ {{∅}}.
8. (A ∪ B)× C = (A× C) ∪ (B × C).

9. x ∈ f−1(A) if and only if f(x) ∈ A.

10. f−1(A ∩ B) ⊆ f−1(A) ∩ f−1(B).

11. If f ◦ g ◦ h is surjective then f is surjective.

12. sin(x) is a bijection from R to R.

13. There exists f such that f is a bijection and f is not invertible.

14. A relation that is reflexive, antisymmetric and transitive is an order relation.

15. If R is not an equivalence relation, it is not reflexive.

16. The usual inclusion on P(A) is a total order.

17. R \ {2} and R \ {10} have the same cardinality.

18. ∀x ∈ Q, ∃y ∈ N, ∃z ∈ N, x = y

z
.

19. Q is uncountably infinite.

20. R is uncountable infinite.
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Exercise 7.5. (2 points)
Answer the following questions and justify your answers. We define the following
relations on R2.

xRy if and only if x2 − y2 ≤ 0

1. Is R transitive?

2. Is R reflexive?

3. Is R symmetric?

4. Is R anti-symmetric?

Exercise 7.6. (2 points)
Prove by induction that for every n ∈ N,

n∑

k=0

k3 =
1

4
n2(n + 1)2.

Exercise 7.7. (3 points)

1. Give a bijection between R and R∗
+.

2. Using the bijection of (1), exhibit a bijection between R× {0, 1} and R∗.

3. Using (1), prove that there exists a bijection between R∗ and R.

4. Deduce that for every n ≥ 1, R×{1, ..., n} and R have the same cardinality.

Exercise 7.8. (3 points)
Prove the following result. Let A, B and C be three sets and f : B → C and
g : A → B such that f ◦ g is injective.

1. Let us assume that g is surjective. Prove that f is injective.

2. Give an example where g is not surjective and f is not injective.
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