Exercises Logic and Set

Master Mathematical Models in Economics and Finance (MMEF). University Paris 1- Panthéon-Sorbonne

> M. Grabisch 2019 - 2020

Contents

1	Logic 1.1 Symbolic logic 1.2 First-order logic	
2	Reasoning in mathematics 2.1 Basic proof 2.2 Induction	5 5 6
3	Set theory 3.1 Sets 3.2 Operations on sets 3.3 Family of sets 3.4 Cartesian product	8 8
4	Functions 4.1 Injection, surjection and bijection	10 10
5	Relations 5.1 Basic properties 5.2 Equivalence relation	
	5.2 Equivalence relation 5.3 Order relation	
6	5.3 Order relation	

1 Logic

1.1 Symbolic logic

Exercise 1.1. Let p be "it is cold" and q "it is raining". Give a simple verbal sentence which describes each of the following propositions:

1. $\neg p$	6. $q \lor \neg p$
2. $p \wedge q$	7. $\neg p \land \neg q$
3. $p \lor q$	
4. $p \leftrightarrow q$	8. $p \leftrightarrow \neg q$
5. $p \rightarrow \neg q$	9. $(p \land \neg q) \rightarrow p$

Exercise 1.2. Let p be "He is tall" and let q be "He is bright", write each of the following statements in symbolic form using p and q.

- 1. He is tall and bright
- 2. He is bright and short
- 3. It is false that he is bright or short
- 4. He is tall, or he is short and bright

Exercise 1.3. Let p be "it is raining", q be "it is going to rain" and r be "one can see the heaven". Give a simple verbal statement which describe the following proposition:

$$(r \to q) \land (\neg r \to p).$$

Exercise 1.4. Determine the truth value of each of the following propositions:

- 1. If 3 + 2 = 7 then 4 + 4 = 8
- 2. It is not true that 2+2=5 if and only if 4+4=10
- 3. Paris is in England or Venezia is not in Italy.
- 4. It is not true that, 1 + 1 = 3 or 2 + 1 = 3
- 5. It is false that (if Paris is in England then London is in France).

Exercise 1.5. Determine the negation of each of the following propositions:

- 1. He is tall and handsome
- 2. He is not rich and not happy (He is neither rich nor happy).
- 3. If she comes, she will talk to you.
- 4. Mark is rich or Eric is poor.
- 5. If Marc is sad, then both Marie and Jean are happy
- 6. Eric is handsome if and only if Marie is intelligent.

Exercise 1.6. 1) Find the truth table of each of the following proposition. 2) Determine their negation.

1. $\neg(p) \land q$ 2. $\neg(q) \rightarrow \neg(p)$ 3. $(p \land q) \rightarrow (p \lor q)$ 5. $(\neg(p \land q) \rightarrow r) \rightarrow (q \land r)$

1.2 First-order logic

Exercise 1.7. Translate in English (or in Mathematics) the following formula

- 1. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x \ge y$
- 2. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x \ge y$
- 3. For all integer, there exists a real number whose square is smaller than itself.
- 4. There exists no integer that is smaller than 20.

Exercise 1.8. Determine the truth value of each of the following statements :

1. $\forall x \in \{1, 2, 4, 5\}, \ x + 2 \in \{3, 4, 7, 8\},$ 2. $\exists x \in \{1, 2, 4, 5\}, \ x + 2 \in \{3, 4, 7, 8\},$ 3. $\exists x \in \mathbb{R}, \ x^2 - 2x + 1 = 0$ 4. $\forall x \in \mathbb{R}, \ |x| = x$ 5. $\forall x \in \mathbb{R}, \ |x| = x$ 6. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, \ n > x \text{ and same question for } \forall x \in \mathbb{R}^*_+, \exists n \in \mathbb{N}, \ \frac{1}{n} < x$ 7. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, \ n > x \text{ and same question for } \forall x \in \mathbb{R}^*_+, \exists n \in \mathbb{N}, \ \frac{1}{n} < x$ 8. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \ y = x^2,$ 8. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \ x^2 = y,$ 9. $\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ x^2 = y,$ 10. $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ (x < y) \to (\exists z \in \mathbb{R}, \ x < z < y),$ 11. $\exists t \in \mathbb{R}, \ \forall x \in \mathbb{R}_-, \ x < t.$ Exercise 1.9. Determine the negation of each of the following proposition:

- 1. Every human being is smart or tall.
- 2. If there exists a human being smart and tall then there exists a tree blue or red.
- 3. If a blue dog exists then the world has a beginning or an end.
- 4. Everything that has a beginning has an end

Exercise 1.10. Determine the negation of the following propositions

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \forall z \in \mathbb{R}, (x \in [y, z] \text{ or } z \in [x, y]),$
- 2. $\exists x \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ \forall z \in \mathbb{R}, \ (z \ge n \to x \le z),$
- 3. For every real number x, there exists y a real number such that $x \leq y$ or there exists a natural number z such that $x \geq z$.
- 4. $\forall x \in \mathbb{R}, \exists z \in \mathbb{N} \text{ such that } z < x \text{ implies that for all } y \in Z, z < y.$
- 5. $\forall n \in \{1, 2, 3\}, \ \forall m \in \{3, 4, 5\}, \ n^m < 3$

Exercise 1.11. Let p(x, y, z) be a predicate on $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$, determine the logical relations between the following propositions:

- 1. $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \exists z \in \mathbb{R} \ p(x, y, z),$
- 2. $\exists z \in \mathbb{R} \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ p(x, y, z),$
- 3. $\forall y \in \mathbb{R} \ \forall x \in \mathbb{R} \ \exists z \in \mathbb{R} \ p(x, y, z),$
- 4. $\forall x \in \mathbb{R} \ \exists z \in \mathbb{R} \ \forall y \in \mathbb{R} \ p(x, y, z).$

Exercise 1.12. A function f on an interval I is uniformly continuous on I if there exists

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, \forall y \in I \cap] x - \delta, x + \delta[, |f(x) - f(y)| \le \varepsilon.$$

- 1. Recall the definition of f being continuous on I.
- 2. Explain the difference between the two definitions.
- 3. Does one notion imply the other?

2 Reasoning in mathematics

2.1 Basic proof

Exercise 2.1. Write for each of the following statements:

- 1. A conditional/universal proof
 - (a) for all real numbers $(x + 1)^3 = x^3 + 3x^2 + 3x + 1$,
 - (b) for all natural numbers x, x 1 divides $x^3 1$,
- 2. An existential proof
 - (a) there exists an integer such that $x^2 2x + 1 = 0$,
 - (b) there exists a real number y such that $y^2 = 4$.
- 3. A counterexample (that shows the statement is false)
 - (a) Every integer is divisible by 4
 - (b) For every real number x, there exists a real number y such that

$$y^2 \le x.$$

- 4. A proof by contrapositive
 - (a) Let $a, b, n \in \mathbb{N}$, if n does not divide (ab) then n does not divide a and does not divide b.
 - (b) Let $x \in \mathbb{N}$, if $x^2 6x + 5$ is even then x is odd.
- 5. A proof by contradiction that
 - (a) If n^2 is even, then n is even.
 - (b) $\sqrt{2}$ is not a rational number¹.

Exercise 2.2. Proof the following statements:

- 1. Let n be an integer. n^2 is even if and only if n is even.
- 2. Let n be an integer, then n^3 is either divisible by 9, 1 more or 1 less than an integer divisible by 9.
- 3. For every positive real number, |x + 2| |x 2| > 0.

¹We admit that x is a positive rational number if there exists $p, q \in \mathbb{N}^*$ such that $x = \frac{p}{q}$ while p and q have only 1 as a common divisor

Exercise 2.3. We will now make some proof on sequence and convergence: recall that $(u_n)_{n\geq 1}$ converges to $l \in \mathbb{R}$ if

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \ \forall n \ge n_0, \ |u_n - l| \le \varepsilon,$$

- 1. Prove that $(2u_n)_{n\geq 1}$ converges to 2l,
- 2. Let $(v_n)_{n\geq 1}$ that converges to k. Define for every $n \geq 1$, $w_m = v_n + u_n$. Prove that the sequence $(w_n)_{n\geq 1}$ converges to k+l by using that for every $n\geq 1$,

$$|w_n - (l+k)| = |v_n - k + u_n - l| \le |v_n - k| + |u_n - l|.$$

2.2 Induction

Exercise 2.4.

Show by induction that for all $n \in \mathbb{N}$,

- 1. $\sum_{t=1}^{n} t^2 = 1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. $\sum_{t=1}^{n} (2t-1) = 1 + 3 + 5 + \dots + (2n-1) = n^2$,
- 3. $n(n^2 + 5)$ is a multiple of 6.

Exercise 2.5.

Define the sequence $(u_n)_{n \in \mathbb{N}}$ by $u_0 = 0$ and $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 2}$.

- 1. Show that the sequence is bounded by above by 2.
- 2. Deduce that the sequence is increasing.
- 3. Conclude.

Exercise 2.6.

- Recall that a natural number n is a prime number if it has two divisors 1 and n. (1 is not a prime number).
- Using the strong principle of induction, show that every number n has a prime divisor.

3 Set theory

3.1 Sets

Exercise 3.1. For each of the following statement say if it is True or False.

- 1. $John \in \{John, Marc\},\$
- 2. $Julie \in \{John, Marc\},\$
- 3. $\{1,2\} \subset \{1,2\},\$
- 4. The function $\theta \to \cos(\theta)$ belongs to the set of functions $\{\theta \to a\cos(\theta) + b\sin(\theta) : a, b \in \mathbb{R}\},\$
- 5. $\{1,3\} \subset \{x, (x-1)(x-2)(x-4) = 0\},\$
- 6. $7 \in \{x \in \mathbb{R}, x^2 5x 14 = 0\}.$
- 7. $\{1\} \subset \{1, 2, 3\}$

Exercise 3.2. 1. Let $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$, and $C = \{3, 4, 5, 6\}$. Compute the following sets

- (a) $A \cup B$,
- (b) $B \cup C$,
- (c) $A \cap B$,
- (d) $A \cap B \cap C$.
- (e) A B,
- (f) B C.
- 2. Same question with $A = \{Victor, Pierre, Luc\}, B = \{Victor, Jean, Eric\}, and C = \{Marc, Eric, Alain\}.$

Exercise 3.3. Compute the following sets.

- 1. $\{1, 2, 3, 4\} \cap \{x \in \mathbb{N} \mid x \text{ is a multiple of } 2\} = ?$
- 2. $\{x \in \mathbb{N} \mid x \leq 40\} \cap (\{x \in \mathbb{N} \mid x \text{ is a multiple of } 3\} \cap \{x \in \mathbb{N} \mid x \text{ is a multiple of } 4\}) = ?$

Exercise 3.4.

- 1. What is the complement of $\{a, b, c\}$ in the set of letters of the Latin alphabet?
- 2. What is the complement of the set of positive odd numbers in the set of positive integers?
- 3. What is the complement of the set of positive odd numbers in the set of all integers?

Exercise 3.5. Let A, B, C be three sets. Suppose that $A \subset B, B \subset C$ and $C \subset A$. Show that A = B = C.

Exercise 3.6. Let A, B be two sets. Prove the following results

- $(A \cup B)^c = A^c \cap B^c$,
- $(A \cap B)^c = A^c \cup B^c$.

3.2 Operations on sets

Exercise 3.7. Let A and B be two sets. Prove the following results

- 1. $A \subset A \cup B$.
- 2. $B \subset A \cup B$.
- 3. If $A \subset B$ then $A \cup B = B$.
- 4. $A \cup B = B \cup A$.
- 5. $\emptyset \cup A = A$.
- 6. $A \cup B = \emptyset$ implies $A = \emptyset$ and $B = \emptyset$.

Exercise 3.8. Let A and B be two sets. Prove the following results

- 1. $A \cap B \subset A$.
- 2. $A \cap B \subset B$.
- 3. $A \cap \emptyset = \emptyset$.
- 4. $A \cap B = B \cap A$.
- 5. If $A \subset B$ then $A \cap B = A$.

Exercise 3.9. Let A and B be two sets. Prove the following results

- 1. $(A B) \cap B = \emptyset$.
- 2. $(A B) \cap (B A) = \emptyset$.
- 3. $(A B) \cap (A \cap B) = \emptyset$.
- 4. (A B) = (B A) if and only if A = B.

Exercise 3.10. Let A and B be two sets. Prove that $A^c - B^c = B - A$.

3.3 Family of sets

Exercise 3.11. Tell if the following statements are true or false

1. $\{1,2\} \in \{1,2\},\$	5. $\{1\} \in \mathbb{N},$
2. $\{1\} \in \{1, \{1\}\},\$	6. $\emptyset \in \emptyset$,
3. $\{1\} \subset \{1, \{1\}\},\$	0. <i>p</i> C <i>p</i> ,
4. $\{\emptyset\}$ is empty,	7. $\emptyset \subset \emptyset$.

Exercise 3.12. Let $\Omega = \{1, 2\}$. Tell if the following statements are true or false:

 1. $\{\{1\}\} \in \mathcal{P}(\Omega),$ 4. $\{1\} \subset \mathcal{P}(\Omega),$

 2. $\{\{1\}\} \subset \mathcal{P}(\Omega),$ 5. $\{1\} \in \Omega,$

 3. $\{1\} \in \mathcal{P}(\Omega),$ 6. $\{1\} \subset \Omega,$

Exercise 3.13. Let $\Omega = \{a, b, c, d\}$. We consider the following family of $\mathcal{P}(\Omega)$:

 $\mathcal{F} = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}.$

- 1. Is \mathcal{F} stable by complements?
- 2. Does it contain the empty set?
- 3. Is it stable by union 2 ?

Exercise 3.14. Let $(A_i)_{i \in I}$ be a family of sets. Prove the following results

- 1. $(\bigcup_{i\in I}A_i)^c = \bigcap_{i\in I}A_i^c$,
- 2. $(\bigcap_{i\in I}A_i)^c = \bigcup_{i\in I}A_i^c$,

3.4 Cartesian product

Exercise 3.15. We want to study how the Cartesian product and the union behave together.

- 1. Let A = [1, 3], A' = [2, 4], B = [0, 2] and B' = [1, 3].
 - (a) Draw $A \times B$, $A' \times B'$.
 - (b) Draw $(A \cup A') \times (B \cup B')$.
 - (c) Compare $(A \times B) \cup (A' \times B')$ and $(A \cup A') \times (B \cup B')$.
- 2. Let A, A', B, B' be 4 sets. Prove that

$$(A \times B) \cup (A' \times B') \subset (A \cup A') \times (B \cup B').$$

3. Find A, A', B and B' such that the previous inclusion is strict (no equality).

Exercise 3.16. We want to study how the Cartesian product and the intersection behave together.

- 1. Let A = [1, 3], A' = [2, 4], B = [0, 2] and B' = [1, 3].
 - (a) Draw $(A \cap A') \times (B \cap B')$.
 - (b) Compare $(A \times B) \cap (A' \times B')$ and $(A \cap A') \times (B \cap B')$.
- 2. Let A, A', B, B' be 4 sets. Prove that

 $(A \times B) \cap (A' \times B') = (A \cap A') \times (B \cap B').$

 $^{^{2}}$ considering a union of elements in the family is still in the set

4 Functions

- In this section, we consider two sets X and Y and a mapping $f: X \to Y$.
- The sets A_1 , A_2 and A are subsets of X and the sets B_1 , B_2 and B are subsets of Y.

Exercise 4.1. 1. If $A_1 \subset A_2$ show that $f(A_1) \subset f(A_2)$.

- 2. Show that $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- 3. Show that $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$. and give an example showing that the equality may not hold.

Exercise 4.2. 1. If $B_1 \subset B_2$ show that $f^{-1}(B_1) \subset f^{-1}(B_2)$.

- 2. Show that $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- 3. Show that $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
- **Exercise 4.3.** 1. Show that $f^{-1}(Y \setminus B) = X \setminus (f^{-1}(B))$.
 - 2. Is it true that $f(X \setminus A) = Y \setminus (f(A))$?
- **Exercise 4.4.** 1. Show that $f(f^{-1}(B)) \subseteq B$ and that the equality may not hold.
 - 2. Show that $A \subseteq f^{-1}(f(A))$ and that the equality may not hold.

Exercise 4.5. Show that $(f_{|A})^{-1}(B) = A \cap f^{-1}(B)$.

4.1 Injection, surjection and bijection

Exercise 4.6. Give an example of a mapping which is:

- 1. injective and surjective.
- 2. injective but not surjective.
- 3. Not injective but surjective.
- 4. Not injective and not surjective.

Exercise 4.7. Let A, B, C be three sets and $f : A \to B$, $g : B \to C$ be two mappings. Show that:

- 1. $g \circ f$ injective implies f injective.
- 2. $g \circ f$ surjective implies g surjective.

Exercise 4.8. Let X, Y be two sets and $f : X \to Y$, $g : Y \to X$ be two mappings such that $g \circ f = id_X$ (the identity mapping of X). Show that:

- 1. f is injective and g is surjective.
- 2. f may not be surjective and g may not be injective.

Exercise 4.9. Let E, F, G be three sets and $f : E \to F, g : F \to G$ be two bijective mappings. Show that $g \circ f : E \to G$ is bijective and that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exercise 4.10. Let X_1, X_2 be two sets and $\pi_1 : X_1 \times X_2 \to X_1$ be the projection mapping on the first coordinate defined by $\pi_1(x_1, x_2) = x_1$. Show that:

- 1. π_1 is surjective.
- 2. π_1 may not be injective.

Exercise 4.11. Let X and Y be two sets and $f : X \to Y$ be a mapping. For every $y \in Y$, what can we say of the sets $f^{-1}(\{y\})$ when f is surjective, injective, bijective?

Exercise 4.12.

- 1. If f is surjective, show that $f(f^{-1}(B)) = B$.
- 2. If f is injective, show that $A = f^{-1}(f(A))$.

5 Relations

5.1 Basic properties

Exercise 5.1. Let $\Omega = \{2, 3, 4, 5, 10\}$ and the following relation

 $a\mathcal{R}b$ if and only if $a \leq b < a^2$.

- Represent this relation with a table and a diagram.
- Is it reflexive? transitive? symmetric? anti-symmetric?

Exercise 5.2. Are the following relations reflexive? transitive? symmetric? anti-symmetric?

- 1. On $\mathbb{N}_* \times \mathbb{N}_* a\mathcal{R}b$ if and only if a divides b
- 2. On 2^E , the inclusion relation between subsets.
- 3. On $\mathbb{R} \times \mathbb{R}$ the relation $x \mathcal{R} y$ if and only if |x| = |y|
- 4. On 2^E the relation $A\mathcal{R}B$ if and only if $A \cap B = \emptyset$
- 5. On \mathbb{R}^2 the relation $(x\mathcal{R}y \text{ iff } u(x) > u(y))$ where $u : \mathbb{R} \to \mathbb{R}$ is a function.
- 6. On \mathbb{R}^2 the relation $(x\mathcal{R}y \text{ iff } u(x) \ge u(y))$ where $u : \mathbb{R} \to \mathbb{R}$ is a function.
- 7. On $(\mathbb{Z} \times \mathbb{N} \{0\})^2$ the relation (a, b)R(c, d) if and only if ad bc = 0

Exercise 5.3.

- Which of the preceding relations are equivalence relations ? Order relations ?
- Give a characterization of an equivalence relation (resp. order relation) in terms of its graph.

5.2 Equivalence relation

Exercise 5.4. Find all partitions of the following sets:

- 1. $U = \{John, Elsa\},\$
- 2. $S = \{a, b, c\}.$

Exercise 5.5. Consider the set of words $W = \{sheet, last, sky, wash, winf, sit\}$. Find W/R where R is the following equivalence relation

- 1. "has the same number of letters",
- 2. "begins with the same letter".

Exercise 5.6. (Theorem 11) Let E be a set, prove that Π is a partition of E if and only if there exists an equivalence relation such that $\Pi = \{\mathcal{R}(x)\}$ where $\mathcal{R}(x)$ is the equivalence class of x for \mathcal{R} .

5.3 Order relation

Exercise 5.7.

- 1. Let $u : X \to \mathbb{R}$ be a utility function and \preceq_u be the preference relation associated with u, that is, $x \preceq_u y$ if and only if $u(x) \le u(y)$. Show that \preceq_u is a complete preorder.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function and define $v : X \to \mathbb{R}$ by v(x) = f(u(x)).
 - (a) Show that \leq_u and \leq_v define the same relation: $x \leq_u y$ iff $x \leq_v y$.
 - (b) Give a counterexample if f is not increasing.
- 3. Give an example of an order relation that can not be written as \leq_u for some u.

Exercise 5.8. We consider the set \mathbb{R}^2 and define two different relations on \mathbb{R}^2 .

1. For every $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 :

 $x \ge y$ if $(x_1 \ge y_1 \text{ and } x_2 \ge y_2)$.

- (a) Show that \geq is an order on \mathbb{R}^2 .
- (b) Show that the order \geq is not complete.
- 2. For every $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in X^2 :

$$x \leq_L y$$
 if $(x_1 < y_1)$ or $(x_1 = y_1 \text{ and } x_2 \leq y_2)$.

- (a) Show that \geq is a complete order on X^2 .
- (b) It is called the *lexicographic order*. Justify this name.

Exercise 5.9. Do the following subsets have a greatest lower bound ? A least upper bound ? A minimum ? A maximum?

 \cdot Subsets of $\mathbb R$:

1.]0, 1[4. $\{\frac{1}{n}\}_{n \in \mathbb{N} - \{0\}}$
2. $\cup_{n \in \mathbb{N}} \{-n\}$	
$3. \ [0,1]$	5. $\{\frac{1}{x}\}_{x \in \mathbb{R} - \{0\}}$

 \cdot Subsets of $\mathbb Q$

1. $\{x \in \mathbb{Q} \mid x > 0\}$ 2. $\{x \in \mathbb{Q} \mid x > \pi\}$

Exercise 5.10. Let A and B be two subsets of \mathbb{R} such that A is bounded by above, B is bounded by above and $A \cap B \neq \emptyset$.

- 1. Prove that $A \cap B$ and $A \cup B$ are bounded by above.
- 2. Compare $\sup(A \cup B)$, $\sup(A \cap B)$ and $\max\{\sup(A), \sup(B)\}$.

6 Cardinality

Exercise 6.1. Construct a bijection between the following sets

- 1. $[0, \pi]$ and [-1, 1],
- 2. $(0, +\infty)$ and \mathbb{R} ,
- 3. [0,1) and (0,1],
- 4. (0, 1) and (0, 1).
- 5. \mathbb{N} and \mathbb{Z}^- ,
- 6. the set of prime number and \mathbb{N} .

Exercise 6.2. Prove that \mathbb{R} and \mathbb{C} have the same cardinality. **Exercise 6.3.** Given two sets A and B, we denote by $A \approx B$ that A and B have the same cardinality. Prove that

- 1. if $A \approx B$ and $B \approx C$ then $A \approx C$,
- 2. if $A \approx B$ and $C \approx D$ then $A \times C \approx C \times D$.

Exercise 6.4. Tell if the following sets are countable or uncountable:

 1. \mathbb{R}^* ,
 4. \mathbb{N}^{10} ,

 2. \mathbb{R}^2 ,
 5. \mathbb{Q} ,

 3. \mathbb{N} ,
 6. (hard) $\mathbb{N}^{\mathbb{N}}$.

7 Annals

7.1 Midterms (October 2015)

Exercise 7.1. (11 points)

Let A, B, C and D be four sets. Let p, q and r be three propositions. Let P(.,.) be a predicate on $\mathbb{R} \times \mathbb{R}$. For each of the following statements, say if it is TRUE or FALSE. (+0.5 if your answer is correct, -0.5 if your answer is wrong, 0 otherwise.)

- 1. If (Paris is on mars) then (London is in England).
- 2. (A unicorn exists) if and only if (2+2=5).
- 3. The negation of $p \to q$ is $\neg p \land q$.
- 4. The negation of $((p \land q) \leftrightarrow r)$ is $(\neg p \lor \neg q) \leftrightarrow \neg r$.
- 5. The negation of "(Marc and Julie are tall) or Sam is small" is "Sam is tall and (Marc or Julie is small)".
- 6. The negation of "If it is raining then everybody is sad" is "If it is raining then everybody is happy".
- 7. The contrapositive of $p \to q$ is $\neg q \to \neg p$.
- 8. $(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r).$
- 9. $\forall x \in \mathbb{R}_+, \exists y \in \mathbb{R}, x = y^2.$
- 10. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}_+, x = y^2.$
- 11. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x = y^2.$
- 12. The negation of " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, P(x, y)$ " is " $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \neg P(x, y)$ ".
- 13. $\{1, 2, 3\} \subset \emptyset$.
- 14. $\{2\} \in \{1, \{2\}\}.$
- 15. $\{2\} \subseteq \{1, \{2\}\}.$
- 16. For all $f : A \to B$ and all $C, D \subseteq A, f(C \cap D) = f(C) \cap f(D)$.
- 17. For all $f: A \to B$ and all $C, D \subseteq A, f(C \cup D) = f(C) \cup f(D)$.
- 18. $(A \cup B) \subseteq (A \cap B)$
- 19. $A \cup (B \cap C) = (A \cup B) \cap C.$
- 20. $\emptyset \in \mathcal{P}(\emptyset)$.
- 21. $\bigcap_{C \in \{\emptyset, \{1,2\}, \{1\}\}} C = \{1\}.$

22.
$$\bigcup_{C \in \{\emptyset, \{1,2\}, \{\{1\}\}\}} C = \{1,2\}.$$

Exercise 7.2. (4 points)

Given two propositions p and q, we define the proposition $p \oplus q$, called exclusive disjunction, with the following truth table:

p	q	$p\oplus q$
T	T	F
T	F	Т
F	Τ	Т
F	F	F

- 1. Write the truth table of $(\neg p \land q) \lor (\neg q \land p)$. What do you observe?
- 2. Check that;
 - (a) $(p \oplus T) \leftrightarrow (\neg p)$ is a tautology.
 - (b) $(p \oplus p) \leftrightarrow F$ is a tautology.
- 3. Use the operator \oplus in order to give a new definition of $A\Delta B$ where A and B are two sets.
- 4. Find a proposition equivalent to $p \lor q$ using only \oplus and \land (try first with \oplus, \land and \neg).

Exercise 7.3. (5 points)

- 1. Let A and B be two sets. <u>Prove</u> the following propositions from the definitions:
 - (a) $B \subset A \cup B$.
 - (b) If $A \subset B$ then $f(A) \subset f(B)$ for a function f from C to D such that $A, B \subset C$.
- 2. Given three sets A, B and C. We define the following set

$$[A, B, C] = \{x \in A \cup B \cup C, \exists y \in \{A, B, C\}, x \notin y\}$$

- (a) Draw on a picture this set for three generic sets A, B and C (such that any intersection is non-trivial).
- (b) Express this set with usual symbol: \cap , \cup , and \setminus (bonus if proof).
- 3. Compare $(A \setminus A) \setminus A$ and $A \setminus (A \setminus A)$. Is the \setminus operation commutative?

7.2 Exam (December 2015)

Exercise 7.4. (10 points)

Let A, B and C be three set. Let p, q and r be three propositions. Let f, g and h be three functions. For each of the following statements write on the left if it is TRUE or FALSE.

- 1. The negation of $(p \lor q) \land r$ is $(\neg p \lor \neg r) \land (\neg q \lor \neg r)$.
- 2. The negation of $p \to q$ is $p \land \neg q$.
- 3. The contrapositive of: "If it is not raining, we will go to the beach" is "If we go to the beach, it is not raining".
- 4. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x = e^y$.
- 5. $\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ x = e^y$.
- 6. Let $X = \{1, \{2\}\}$ and $Y = \{1, \{1, \{2\}\}\}, X \in Y$.
- 7. $\emptyset \subseteq \{\{\emptyset\}\}\}.$
- 8. $(A \cup B) \times C = (A \times C) \cup (B \times C).$
- 9. $x \in f^{-1}(A)$ if and only if $f(x) \in A$.
- 10. $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$.
- 11. If $f \circ g \circ h$ is surjective then f is surjective.
- 12. sin(x) is a bijection from \mathbb{R} to \mathbb{R} .
- 13. There exists f such that f is a bijection and f is not invertible.
- 14. A relation that is reflexive, antisymmetric and transitive is an order relation.
- 15. If \mathcal{R} is not an equivalence relation, it is not reflexive.
- 16. The usual inclusion on $\mathcal{P}(A)$ is a total order.
- 17. $\mathbb{R} \setminus \{2\}$ and $\mathbb{R} \setminus \{10\}$ have the same cardinality.
- 18. $\forall x \in \mathbb{Q}, \ \exists y \in \mathbb{N}, \ \exists z \in \mathbb{N}, \ x = \frac{y}{z}.$
- 19. \mathbb{Q} is uncountably infinite.
- 20. \mathbb{R} is uncountable infinite.

Exercise 7.5. (2 points)

Answer the following questions and justify your answers. We define the following relations on \mathbb{R}^2 .

$$x\mathcal{R}y$$
 if and only if $x^2 - y^2 \le 0$

- 1. Is \mathcal{R} transitive?
- 2. Is \mathcal{R} reflexive?
- 3. Is \mathcal{R} symmetric?
- 4. Is \mathcal{R} anti-symmetric?

Exercise 7.6. (2 points) Prove by induction that for every $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k^3 = \frac{1}{4}n^2(n+1)^2.$$

Exercise 7.7. (3 points)

- 1. Give a bijection between \mathbb{R} and \mathbb{R}_{+}^{*} .
- 2. Using the bijection of (1), exhibit a bijection between $\mathbb{R} \times \{0, 1\}$ and \mathbb{R}^* .
- 3. Using (1), prove that there exists a bijection between \mathbb{R}^* and \mathbb{R} .
- 4. Deduce that for every $n \ge 1$, $\mathbb{R} \times \{1, ..., n\}$ and \mathbb{R} have the same cardinality.

Exercise 7.8. (3 points)

Prove the following result. Let A, B and C be three sets and $f: B \to C$ and $g: A \to B$ such that $f \circ g$ is injective.

- 1. Let us assume that g is surjective. Prove that f is injective.
- 2. Give an example where g is not surjective and f is not injective.