Logic and Sets Final exam 2021 (2h)

Name: QEM/MMEF

Exercise 1 (5pts)

Indicate for each of the following assertions if they are true (T) or false (F).

- 1. The least number principle (Fermat infinite descent) is stronger than the weak principle of induction. \vdash
- 2. $(A\Delta B)\Delta C = A\Delta(B\Delta C)$
- 3. f not injective means that x = y implies f(x) = f(y).
- 4. $f^{-1}(B_1 \cap B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2)$ but not the converse inclusion.
- 5. $x \mapsto e^x$ is a bijection from \mathbb{R} to $\mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$.
- 6. $x \mapsto x^2$ is an injection from \mathbb{R}_+ to \mathbb{R} .
- 7. $x \mapsto x^2$ is a surjection from \mathbb{R} to \mathbb{R}_+ .
- 8. $f: X \longrightarrow Y$ is invertible if there exists a mapping $f^{-1}: Y \longrightarrow X$ such that $f^{-1} \circ f = Id_X$.
- 9. $g \circ f$ injective implies f injective.
- 10. The inverse function of $x \mapsto x$ is the function $x \mapsto \frac{1}{x}$.
- 11. The binary relation \subseteq is reflexive, asymmetric, transitive and complete. \vdash
- 12. If $X \subseteq \mathbb{R}$ is bounded from below, it has an infimum.
- 13. It is possible for $X \subseteq E$ to have a least element but no minimal element.
- 14. \mathbb{R} is equipotent with the set of irrational numbers.
- 15. \mathbb{R} is equipotent with the set of rational numbers.
- 16. $[0,1] \cap \mathbb{Q}$ is countable.
- 17. $2^{\mathbb{N}}$ is countable.
- 18. $\mathbb{N}^{\mathbb{N}}$ is uncountable.
- 19. Countable cartesian products of countable sets are countable.
- 20. The set of all finite subsets of \mathbb{N} is countable.

Exercise 2 (4 pts)

1. (1pt) Give the rank and nullity of

$$A = \begin{bmatrix} 2 & 1 & 3 & 1 & 2 \\ 4 & 2 & 0 & 2 & 4 \end{bmatrix}$$

2. (3pts) Solve the following linear system where $a \in \mathbb{R}$. Depending on the value of a, determine the set of its solutions, if any.

$$\begin{cases} x - y - z = 1 \\ 2x - 2y + z = 2 \\ 3x + y - 2z = -1 \\ 4x - 4y - z = 4 \\ x + 3y - 3z = a \end{cases}$$

Exercise 3 (3pts)

Consider a finite set E and the set of partitions of E, denoted by $\Pi(E)$. We define the binary relation \mathcal{R} on $\Pi(E)$ by

$$\pi_1 \mathcal{R} \pi_2 \Leftrightarrow \forall P_1 \in \pi_1, \exists P_2 \in \pi_2 \text{ such that } P_1 \subseteq P_2.$$

Show that \mathcal{R} is an order relation. Is it complete? What are the maximal and minimal elements?

Exercise 4 (3 pts)

Show that for any mapping $f: X \longrightarrow Y$ and any $A, B \subseteq X$, it holds

$$f^{-1}(f(A) \setminus f(B)) \subseteq B^c$$
.

Is it true that $A \setminus B \subseteq f^{-1}(f(A) \setminus f(B))$? Give a counterexample if not.

Exercise 5 (4pts)

Determine, if they exist, the set of lower bounds, upper bounds, the minimal and maximal elements, the infimum and supremum of the following subsets of \mathbb{R} :

- 1. $[0, 1[\cup]2, 3]$
- $2. \{ \log x : x \in \mathbb{Q}_+ \}$

Same question for the following subsets of \mathbb{Q} :

- 1. $\left\{ \frac{1}{n^3} : n \in \mathbb{Z} \setminus \{0\} \right\}$
- $2. \{x \in \mathbb{Q} : x > \sqrt{3}\}$

Question (1pt)

Explain the meaning of: A has cardinality at least as large as the cardinality of B.

2

```
Ex 2
```

1. rank of $\begin{bmatrix} 2 & 1 & 3 & 1 & 2 \\ 4 & 2 & 0 & 2 & 4 \end{bmatrix}$. The determinant of the submatrix $\begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$ is $-6 \neq 0$, hence rank A = 2.

Nullity A = m - rank A = 5 - 2 = 3.

$$2. \left[Ab \right] = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 1 & 2 \\ 3 & 1 & -2 & -1 \\ 4 & -4 & -1 & 4 \\ 1 & 3 & -3 & a \end{bmatrix}$$

Column 1:
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 4 & 2 & -4 \\ 0 & 0 & 3 & 0 \\ 0 & 4 & -2 & a-1 \end{bmatrix}$$
 wap
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 4 & 2 & -4 \\ 0 & 0 & 3 & 0 \\ 0 & 4 & -2 & a-1 \end{bmatrix}$$

rank $A = ran \in [A b]$ iff a+3=0, i.e., a=-3. If $a \neq -3$, the system has no solution A = 3, and A = 3, the solution is unique as rank A = 3, and is given by: $\begin{cases} x = -1 \\ y = -1 \end{cases}$

Ex.3 Rionflexive: APIETTA, PIEPL.

- R is antisymmetric: consider Tr, The St. The RT2 and TERTIA.

Take PreTr. Then I PreTr, PreTr. As TERTIA, I PreTra,

Pre Pr. As Pr. PreTr. and PrePrePr, we have Pre Pr's,

and therefore PrePr. It follows that TreTre.

- R transitive. Consider Π1, Π2, Π3 S.r. Π1 R Π2, Π2 R Π3.

 Take P1 ∈ T1. Then ∃P2 ∈ Π2, P1 ⊆ P2, ∃ P3 ∈ Γ3, P2 ⊆ P3.

 Therefore P1 ⊆ P3. Then T1, R T3.
 - Re not complete as for example {5,1,23,3} is not comparable with {\1,33,23.
 - maximal element is $\hat{\pi} = \{ \{ x_n \}, \dots, \{ x_m \} \}$, with $E = \{ x_1, \dots, x_m \}$.

Ex. 4 Take $x \in f^{-1}(f(A) \setminus f(B))$. Then $f(x) \in f(A) \setminus f(B)$, which implies $f(x) \notin f(B)$. Therefore $x \notin B$.

- A\B \subseteq f⁻¹(f(A)\f(B)) is not time: take f: X-) Y a constant function, and A \nsubseteq B. Then A\B \neq but $f(A) \setminus f(B) = \emptyset$ so that $f^{-1}(f(A) \setminus f(B)) = \emptyset$.

E,	. 5	10 mer bourt	uper bounds	min	wax	tail	au p
ina	[0,1[0]2,3]]-∞,0]	[3, +00[<u> </u>	3	6	6
	[0,1[U]2,3] {20ga : x ∈ Q+}	P	\$	Φ	4	-1	1
	{ \frac{1}{m3} : m ∈ 72 \ {0}}} { α∈ Q: x 7√3 }]-00,1]nQ	anti, too L	ϕ	\$	φ	9