MICROECONOMICS 1A \& 1B

Mathematical Appendix for Economics *
 \qquad

Masters M1 MAEF, M1 IMMAEF \& QEM1 - DU MMEF

June 12, 2019

Contents

1 Notations 2
1.1 Continuity 4
1.2 Differentiability 4
1.3 Compactness 5
2 Extreme Value Theorem 6
3 Karush-Kuhn-Tucker Conditions 7
4 Concavity and quasi-concavity 9

[^0]
1 Notations

- $\mathbb{R}^{n}:=\left\{x=\left(x^{1}, \ldots, x^{h}, \ldots, x^{n}\right): x^{h} \in \mathbb{R}, \forall h=1, \ldots, n\right\}$
- $x \in \mathbb{R}^{n}$ and $\bar{x} \in \mathbb{R}^{n}$,

$$
\begin{gathered}
x \geq \bar{x} \Longleftrightarrow x^{h} \geq \bar{x}^{h}, \forall h=1, \ldots, n \\
x>\bar{x} \Longleftrightarrow x \geq \bar{x} \text { and } x \neq \bar{x} \\
x \gg \bar{x} \Longleftrightarrow x^{h}>\bar{x}^{h}, \forall h=1, \ldots, n
\end{gathered}
$$

- $x \in \mathbb{R}^{n}$ and $\bar{x} \in \mathbb{R}^{n}, x \cdot \bar{x}$ denotes the scalar product of x and \bar{x}.
- A is a matrix with m rows and n columns and B is a matrix with n rows and l columns, $A B$ denotes the matrix product of A and B.
- H is a $n \times n$ matrix, $\operatorname{tr}(H)$ denotes the trace of H and $\operatorname{det}(H)$ denotes the determinant of H.
- $x \in \mathbb{R}^{n}$ is treated as a row matrix.
- x^{T} denotes the transpose of $x \in \mathbb{R}^{n}, x^{T}$ is treated as a column matrix.
- f is a function from $X \subseteq \mathbb{R}^{n}$ to \mathbb{R},
f is weakly increasing (or non-decreasing) on X if for all x and \bar{x} in X,

$$
x \leq \bar{x} \Longrightarrow f(x) \leq f(\bar{x})
$$

f is increasing on X if for all x and \bar{x} in X,

$$
x \ll \bar{x} \Longrightarrow f(x)<f(\bar{x})
$$

f is strictly increasing on X if for all x and \bar{x} in X,

$$
x<\bar{x} \Longrightarrow f(x)<f(\bar{x})
$$

f strictly increasing on $X \Longrightarrow f$ increasing on X
f strictly increasing on $X \Longrightarrow f$ weakly increasing (or non-decreasing) on X

- $X \subseteq \mathbb{R}^{n}$ is an open set, f is a function from X to \mathbb{R} and $x \in X$,

$$
\nabla f(x):=\left(\frac{\partial f}{\partial x^{1}}(x), \ldots, \frac{\partial f}{\partial x^{h}}(x), \ldots, \frac{\partial f}{\partial x^{n}}(x)\right)
$$

denotes the gradient of f at x, and

$$
\mathrm{H} f(x):=\left[\begin{array}{ccccc}
\frac{\partial^{2} f}{\partial x^{1} \partial x^{1}}(x) & \cdots & \frac{\partial^{2} f}{\partial x^{h} \partial x^{1}}(x) & \cdots & \frac{\partial^{2} f}{\partial x^{n} \partial x^{1}}(x) \\
\vdots & & \vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x^{1} \partial x^{h}}(x) & \cdots & \frac{\partial^{2} f}{\partial x^{h} \partial x^{h}}(x) & \cdots & \frac{\partial^{2} f}{\partial x^{n} \partial x^{h}}(x) \\
\vdots & & \vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x^{1} \partial x^{n}}(x) & \cdots & \frac{\partial^{2} f}{\partial x^{h} \partial x^{n}}(x) & \cdots & \frac{\partial^{2} f}{\partial x^{n} \partial x^{n}}(x)
\end{array}\right]_{n \times n}
$$

denotes the Hessian matrix of f at x.

- $X \subseteq \mathbb{R}^{n}$ is an open set, $g:=\left(g_{1}, \ldots, g_{j}, \ldots, g_{m}\right)$ is a mapping from X to \mathbb{R}^{m} and $x \in X$,

$$
\mathrm{J} g(x):=\left[\begin{array}{ccccc}
\frac{\partial g_{1}}{\partial x^{1}}(x) & \ldots & \frac{\partial g_{1}}{\partial x^{h}}(x) & \ldots & \frac{\partial g_{1}}{\partial x^{n}}(x) \\
\vdots & & \vdots & & \vdots \\
\frac{\partial g_{j}}{\partial x^{1}}(x) & \ldots & \frac{\partial g_{j}}{\partial x^{h}}(x) & \ldots & \frac{\partial g_{j}}{\partial x^{n}}(x) \\
\vdots & & \vdots & & \vdots \\
\frac{\partial g_{m}}{\partial x^{1}}(x) & \ldots & \frac{\partial g_{m}}{\partial x^{h}}(x) & \ldots & \frac{\partial g_{m}}{\partial x^{n}}(x)
\end{array}\right]_{m \times n}=\left[\begin{array}{c}
\nabla g_{1}(x) \\
\vdots \\
\nabla g_{j}(x) \\
\vdots \\
\nabla g_{m}(x)
\end{array}\right]_{m \times n}
$$

denotes the Jacobian matrix of g at x.

1.1 Continuity

f is a function from $X \subseteq \mathbb{R}^{n}$ to \mathbb{R}.
Definition 1 (Continuous function) f is continuous at $\bar{x} \in X$ if

$$
\lim _{x \rightarrow \bar{x}} f(x)=f(\bar{x})
$$

f is continuous on X if f is continuous at every point $\bar{x} \in X$.

Exercise 2

1. f is continuous at $\bar{x} \in X$ if and only if for every open ball J of center $f(\bar{x})$ there exists an open ball B of center \bar{x} such that $f(B \cap X) \subseteq J$.
2. f is continuous at $\bar{x} \in X$ if and only if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|x-\bar{x}\|<\delta$ and $x \in X \Longrightarrow|f(x)-f(\bar{x})|<\varepsilon$.

Proposition 3 (Sequentially continuous function) f is continuous at $\bar{x} \in X$ if and only if f is sequentially continuous at \bar{x}, that is, for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ such that $x_{n} \rightarrow \bar{x}$, we have that

$$
f\left(x_{n}\right) \rightarrow f(\bar{x})
$$

1.2 Differentiability

$X \subseteq \mathbb{R}^{n}$ is an open set, f is a function from X to \mathbb{R}.
Definition 4 (Differentiable function) f is differentiable at $\bar{x} \in X$ if

1. all the partial derivatives of f at \bar{x} exist,
2. there exists a function $E_{\bar{x}}$ defined in some open ball $B(0, \varepsilon) \subseteq \mathbb{R}^{n}$ such that for every $u \in B(0, \varepsilon)$,

$$
\begin{gathered}
f(\bar{x}+u)=f(\bar{x})+\nabla f(\bar{x}) \cdot u+\|u\| E_{\bar{x}}(u) \\
\text { where } \lim _{u \rightarrow 0} E_{\bar{x}}(u)=0
\end{gathered}
$$

f is differentiable on X if f is differentiable at every point $\bar{x} \in X$.

Exercise 5 If f is differentiable at \bar{x}, then f is continuous at \bar{x}.
Definition 6 (Directional derivative) Let $v \in \mathbb{R}^{n}, v \neq 0$. The directional derivative $D_{v} f(\bar{x})$ of f at $\bar{x} \in X$ in the direction v is defined as

$$
\lim _{t \rightarrow 0^{+}} \frac{f(\bar{x}+t v)-f(\bar{x})}{t}
$$

if this limit exists and it is finite.
Proposition 7 (Differentiable function/Directional derivative) If f is differentiable at $\bar{x} \in X$, then for every $v \in \mathbb{R}^{n}$ with $v \neq 0$,

$$
D_{v} f(\bar{x})=\nabla f(\bar{x}) \cdot v
$$

1.3 Compactness

X is a subset of \mathbb{R}^{n}.
Proposition 8 (Compact set/Subsequences) X is compact if and only if for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ there exists a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ converges to some point $\bar{x} \in X .{ }^{1}$

Proposition 9 (Compact set) X is compact if and only if it is closed and bounded.

Definition 10 (Closed set) X is closed if its complement $\mathcal{C}(X):=\mathbb{R}^{n} \backslash X$ is open.

Proposition 11 (Sequentially closed) X is closed if and only if it is sequentially closed, that is, for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ such that $x_{n} \rightarrow \bar{x}$, we have

$$
\bar{x} \in X
$$

Definition 12 (Bounded set) X is bounded if it is included in some ball, that is, there exists $\varepsilon>0$ such that for all $x \in X,\|x\|<\varepsilon$.

[^1]
2 Extreme Value Theorem

Theorem 13 (Extreme Value Theorem/Weierstrass Theorem) Let f be a function from $X \subseteq \mathbb{R}^{n}$ to \mathbb{R}. If X is a non-empty compact set and f is continuous on X, then

- $\exists x^{*} \in X$ such that $f\left(x^{*}\right) \geq f(x)$ for all $x \in X$, and
- $\exists x^{* *} \in X$ such that $f\left(x^{* *}\right) \leq f(x)$ for al $x \in X$.

3 Karush-Kuhn-Tucker Conditions

In this section, we focus on necessary and sufficient conditions in terms of first-order conditions for solving a maximization problem with inequality constraints.

In this section, we assume that

- $C \subseteq \mathbb{R}^{n}$ is convex and open,
- the following functions f and g_{j} with $j=1, \ldots, m$ are differentiable on C.

$$
\begin{gathered}
f: x \in C \subseteq \mathbb{R}^{n} \longrightarrow f(x) \in \mathbb{R} \text { and } \\
g_{j}: x \in C \subseteq \mathbb{R}^{n} \longrightarrow g_{j}(x) \in \mathbb{R}, \forall j=1, \ldots, m
\end{gathered}
$$

Maximization problem

$$
\begin{array}{ll}
\max & f(x) \\
x \in C & \tag{1}\\
\text { subject to } & g_{j}(x) \geq 0, \forall j=1, \ldots, m
\end{array}
$$

where f is the objective function, and g_{j} with $j=1, \ldots, m$ are the constraint functions.

The Karush-Kuhn-Tucker conditions associated with problem (1) are given below

$$
\left\{\begin{array}{l}
\nabla f(x)+\sum_{j=1}^{m} \lambda_{j} \nabla g_{j}(x)=0 \tag{2}\\
\lambda_{j} \geq 0, \forall j=1, \ldots, m \\
\lambda_{j} g_{j}(x)=0, \forall j=1, \ldots, m \\
g_{j}(x) \geq 0, \forall j=1, \ldots, m
\end{array}\right.
$$

where for every $j=1, \ldots, m, \lambda_{j} \in \mathbb{R}$ is called Lagrange multiplier associated with the inequality constraint g_{j}.

Definition 14 Let $x^{*} \in C$, we say that the constraint j is binding at x^{*} if $g_{j}\left(x^{*}\right)=0$. We denote

1. $B\left(x^{*}\right)$ the set of all binding constraints at x^{*}, that is

$$
B\left(x^{*}\right):=\left\{j=1, \ldots, m: g_{j}\left(x^{*}\right)=0\right\}
$$

2. $m^{*} \leq m$ the number of elements of $B\left(x^{*}\right)$ and
3. $g^{*}:=\left(g_{j}\right)_{j \in B\left(x^{*}\right)}$ the following mapping

$$
g^{*}: x \in C \subseteq \mathbb{R}^{n} \longrightarrow g^{*}(x)=\left(g_{j}(x)\right)_{j \in B\left(x^{*}\right)} \in \mathbb{R}^{m^{*}}
$$

Theorem 15 (Karush-Kuhn-Tucker are necessary conditions) Let x^{*} be a solution to problem (1). Assume that one of the following conditions is satisfied.

1. For all $j=1, \ldots, m, g_{j}$ is a linear or affine function.

2. Slater's Condition :

- for all $j=1, \ldots, m, g_{j}$ is a concave function or g_{j} is a quasiconcave function with $\nabla g_{j}(x) \neq 0$ for all $x \in C$, and
- there exists $\bar{x} \in C$ such that $g_{j}(\bar{x})>0$ for all $j=1, \ldots, m$.

3. Rank Condition : $\operatorname{rank} J g^{*}\left(x^{*}\right)=m^{*} \leq n$.

Then, there exists $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{j}^{*}, \ldots, \lambda_{m}^{*}\right) \in \mathbb{R}_{+}^{m}$ such that $\left(x^{*}, \lambda^{*}\right)$ satisfies the Karush-Kuhn-Tucker Conditions (2).

Theorem 16 (Karush-Kuhn-Tucker are sufficient conditions) Suppose that there exists $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{j}^{*}, \ldots, \lambda_{m}^{*}\right) \in \mathbb{R}_{+}^{m}$ such that $\left(x^{*}, \lambda^{*}\right) \in C \times \mathbb{R}_{+}^{m}$ satisfies the Karush-Kuhn-Tucker Conditions (2). Assume that

1. f is a concave function or f is a quasi-concave function with $\nabla f(x) \neq 0$ for all $x \in C$, and
2. g_{j} is a quasi-concave function for all $j=1, \ldots, m$.

Then, x^{*} is a solution to problem (1).

4 Concavity and quasi-concavity

In this section, we assume that C is a convex subset of \mathbb{R}^{n} and f is a function from C to \mathbb{R}.

Concavity

Definition 17 (Concave function) f is concave if for all $t \in[0,1]$ and for all x and \bar{x} in C,

$$
f(t x+(1-t) \bar{x}) \geq t f(x)+(1-t) f(\bar{x})
$$

Proposition $18 f$ is concave if and only if the set

$$
\{(x, \alpha) \in C \times \mathbb{R}: f(x) \geq \alpha\}
$$

is a convex subset of \mathbb{R}^{n+1}. The set above is called hypograph of f.
Proposition $19 C$ is open and f is differentiable on $C . f$ is concave if and only if for all x and \bar{x} in C,

$$
f(x) \leq f(\bar{x})+\nabla f(\bar{x}) \cdot(x-\bar{x})
$$

Proposition $20 C$ is open and f is twice continuously differentiable on C. f is concave if and only if for all $x \in C$ the Hessian matrix $\operatorname{H} f(x)$ is negative semidefinite, that is, for all $x \in C$

$$
v \mathrm{H} f(x) v^{T} \leq 0, \forall v \in \mathbb{R}^{n}
$$

Definition 21 (Strictly concave function) f is strictly concave if for all $t \in] 0,1[$ and for all x and \bar{x} in C with $x \neq \bar{x}$,

$$
f(t x+(1-t) \bar{x})>t f(x)+(1-t) f(\bar{x})
$$

Proposition $22 C$ is open and f is differentiable on $C . f$ is strictly concave if and only if for all x and \bar{x} in C with $x \neq \bar{x}$,

$$
f(x)<f(\bar{x})+\nabla f(\bar{x}) \cdot(x-\bar{x})
$$

Proposition $23 C$ is open and f is twice continuously differentiable on C. If for all $x \in C$ the Hessian matrix $\mathrm{H} f(x)$ is negative definite, that is, for all $x \in C$

$$
v \mathrm{H} f(x) v^{T}<0, \forall v \in \mathbb{R}^{n}, v \neq 0
$$

then f is strictly concave.

Quasi-concavity

Definition 24 (Quasi-concave function) f is quasi-concave if and only if for all $\alpha \in \mathbb{R}$ the set

$$
\{x \in C: f(x) \geq \alpha\}
$$

is a convex subset of \mathbb{R}^{n}. The set above is called upper contour set of f at α.
Proposition $25 f$ is quasi-concave if and only if for all $t \in[0,1]$ and for all x and \bar{x} in C,

$$
f(t x+(1-t) \bar{x}) \geq \min \{f(x), f(\bar{x})\}
$$

Proposition $26 C$ is open and f is differentiable on $C . f$ is quasiconcave if and only if for all x and \bar{x} in C,

$$
f(x) \geq f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot(x-\bar{x}) \geq 0
$$

Proposition $27 C$ is open and f is differentiable on C. If f is quasiconcave and $\nabla f(x) \neq 0$ for all $x \in C$, then for all x and \bar{x} in C with $x \neq \bar{x}$,

$$
f(x)>f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot(x-\bar{x})>0
$$

Proposition $28 C$ is open and f is twice continuously differentiable on C. If f is quasi-concave, then for all $x \in C$ the Hessian matrix $\mathrm{H} f(x)$ is negative semidefinite on $\operatorname{Ker} \nabla f(x)$, that is, for all $x \in C$

$$
v \in \mathbb{R}^{n} \text { and } \nabla f(x) \cdot v=0 \Longrightarrow v \mathrm{H} f(x) v^{T} \leq 0
$$

Definition 29 (Strictly quasi-concave function) f is strictly quasi-concave if and only if for all $t \in] 0,1[$ and for all x and \bar{x} in C with $x \neq \bar{x}$,

$$
f(t x+(1-t) \bar{x})>\min \{f(x), f(\bar{x})\}
$$

Proposition $30 C$ is open and f is differentiable on C.

1. If for all x and \bar{x} in C with $x \neq \bar{x}$,

$$
f(x) \geq f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot(x-\bar{x})>0
$$

then f is strictly quasi-concave.
2. If f is strictly quasi-concave and $\nabla f(x) \neq 0$ for all $x \in C$, then for all x and \bar{x} in C with $x \neq \bar{x}$,

$$
f(x) \geq f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot(x-\bar{x})>0
$$

Proposition $31 C$ is open and f is twice continuously differentiable on C. If for all $x \in C$ the Hessian matrix $\mathrm{H} f(x)$ is negative definite on $\operatorname{Ker} \nabla f(x)$, that is, for all $x \in C$

$$
v \in \mathbb{R}^{n}, v \neq 0 \text { and } \nabla f(x) \cdot v=0 \Longrightarrow v \mathrm{H} f(x) v^{T}<0
$$

then f is strictly quasi-concave.
Remark 32 We remark that
$\left.\begin{array}{rl}f \text { linear or affine } \Rightarrow & \begin{array}{c}f \text { concave } \\ \Downarrow \\ f \text { quasi-concave }\end{array}\end{array} \Leftarrow \Leftarrow \begin{array}{c}f \text { strictly concave } \\ \Downarrow\end{array}\right)$

We remind the definitions and some properties of negative definite/semidefinite matrices. Let H be a $n \times n$ symmetric matrix.

Definition 33

1. H is negative semidefinite if $v \mathrm{H} v^{T} \leq 0$ for all $v \in \mathbb{R}^{n}$.
2. H is negative definite if $v \mathrm{H} v^{T}<0$ for all $v \in \mathbb{R}^{n}$ with $v \neq 0$.

Proposition 34

1. H has n real eigenvalues. We denote $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of H.
2. H is negative semidefinite if and only $\lambda_{i} \leq 0$ for every $i=1, \ldots, n$.
3. H is negative definite if and only $\lambda_{i}<0$ for every $i=1, \ldots, n$.

Proposition 35

1. If H is negative semidefinite, then $\operatorname{tr}(H) \leq 0$ and $\operatorname{det}(H) \geq 0$ if n is even, $\operatorname{det}(H) \leq 0$ if n is odd.
2. If H is negative definite, then $\operatorname{tr}(H)<0$ and $\operatorname{det}(H)>0$ if n is even, $\operatorname{det}(H)<0$ if n is odd.

We remark that if $n=2$, then the conditions stated in the proposition above also are sufficient conditions, that is

1. H is negative semidefinite if and only if $\operatorname{tr}(H) \leq 0$ and $\operatorname{det}(H) \geq 0$.
2. H is negative definite if and only if $\operatorname{tr}(H)<0$ and $\operatorname{det}(H)>0$.

References

Arrow, K.-J., Hurwicz, L., Uzawa, H., 1958. Studies in linear and non-linear programming. Stanford University Press.

Cass, D., 2000. Non-linear Programming for Economists. Class Notes, Ph.D. Program in Economics, University of Pennsylvania.
de la Fuente, A., 2005. Mathematical Methods and Models for Economists. Cambridge University Press.

Mas-Colell, A., Whinston, M. D., Green, J. R., 1995. Microeconomic Theory. Oxford University Press.

[^0]: *Author: Elena del Mercato, Université Paris 1 Panthon-Sorbonne, Paris School of Economics \& Centre d'Economie de la Sorbonne.

[^1]: ${ }^{1}$ Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence and $\left(n_{k}\right)_{k \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers. The composed sequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ is a subsequence of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$.

