MICROECONOMICS 1

Mathematical Appendix for Economics *

Masters M1 MAEF & M1 IMMAEF

September 15, 2023

Contents

1	Notations	2
	1.1 Continuity \ldots	4
	1.2 Differentiability \ldots	4
	1.3 Compactness	5
2	Extreme Value Theorem	6
3	Karush–Kuhn–Tucker Conditions	7
4	Concavity and quasi-concavity	9

^{*}Author: Elena del Mercato, Université Paris 1 Panthon-Sorbonne, Paris School of Economics & Centre d'Economie de la Sorbonne.

1 Notations

- $\mathbb{R}^n := \{x = (x^1, \dots, x^h, \dots, x^n) : x^h \in \mathbb{R}, \forall h = 1, \dots, n\}$
- $x \in \mathbb{R}^n$ and $\overline{x} \in \mathbb{R}^n$,

$$x \ge \overline{x} \iff x^h \ge \overline{x}^h, \ \forall \ h = 1, ..., n$$
$$x > \overline{x} \iff x \ge \overline{x} \text{ and } x \neq \overline{x}$$
$$x \gg \overline{x} \iff x^h > \overline{x}^h, \ \forall \ h = 1, ..., n$$

- $x \in \mathbb{R}^n$ and $\overline{x} \in \mathbb{R}^n$, $x \cdot \overline{x}$ denotes the scalar product of x and \overline{x} .
- A is a matrix with m rows and n columns and B is a matrix with n rows and l columns, AB denotes the matrix product of A and B.
- H is a $n \times n$ matrix, tr(H) denotes the trace of H and det(H) denotes the determinant of H.
- $x \in \mathbb{R}^n$ is treated as a row matrix.
- x^T denotes the transpose of $x \in \mathbb{R}^n$, x^T is treated as a column matrix.
- f is a function from $X \subseteq \mathbb{R}^n$ to \mathbb{R} ,

f is weakly increasing (or non-decreasing) on X if for all x and \overline{x} in X,

$$x \le \overline{x} \Longrightarrow f(x) \le f(\overline{x})$$

f is **increasing** on X if for all x and \overline{x} in X,

$$x \ll \overline{x} \Longrightarrow f(x) < f(\overline{x})$$

f is strictly increasing on X if for all x and \overline{x} in X,

$$x < \overline{x} \Longrightarrow f(x) < f(\overline{x})$$

f strictly increasing on $X \Longrightarrow f$ increasing on X

f strictly increasing on $X \Longrightarrow f$ weakly increasing (or non-decreasing) on X

• $X \subseteq \mathbb{R}^n$ is an open set, f is a function from X to \mathbb{R} and $x \in X$,

$$\nabla f(x) := \left(\frac{\partial f}{\partial x^1}(x), \dots, \frac{\partial f}{\partial x^h}(x), \dots, \frac{\partial f}{\partial x^n}(x)\right)$$

denotes the **gradient** of f at x, and

$$\mathbf{H}f(x) := \left[\begin{array}{cccc} \frac{\partial^2 f}{\partial x^1 \partial x^1}(x) & \dots & \frac{\partial^2 f}{\partial x^h \partial x^1}(x) & \dots & \frac{\partial^2 f}{\partial x^n \partial x^1}(x) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x^1 \partial x^h}(x) & \dots & \frac{\partial^2 f}{\partial x^h \partial x^h}(x) & \dots & \frac{\partial^2 f}{\partial x^n \partial x^h}(x) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x^1 \partial x^n}(x) & \dots & \frac{\partial^2 f}{\partial x^h \partial x^n}(x) & \dots & \frac{\partial^2 f}{\partial x^n \partial x^n}(x) \end{array} \right]_{n \times n}$$

denotes the **Hessian matrix** of f at x.

• $X \subseteq \mathbb{R}^n$ is an open set, $g := (g_1, \dots, g_j, \dots, g_m)$ is a mapping from X to \mathbb{R}^m and $x \in X$,

$$\mathbf{J}g(x) := \begin{bmatrix} \frac{\partial g_1}{\partial x^1}(x) & \dots & \frac{\partial g_1}{\partial x^h}(x) & \dots & \frac{\partial g_1}{\partial x^n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_j}{\partial x^1}(x) & \dots & \frac{\partial g_j}{\partial x^h}(x) & \dots & \frac{\partial g_j}{\partial x^n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x^1}(x) & \dots & \frac{\partial g_m}{\partial x^h}(x) & \dots & \frac{\partial g_m}{\partial x^n}(x) \end{bmatrix}_{m \times n} = \begin{bmatrix} \nabla g_1(x) \\ \vdots \\ \nabla g_j(x) \\ \vdots \\ \nabla g_m(x) \end{bmatrix}_{m \times n}$$

denotes the **Jacobian matrix** of g at x.

1.1 Continuity

f is a function from $X \subseteq \mathbb{R}^n$ to \mathbb{R} .

Definition 1 (Continuous function) f is continuous at $\overline{x} \in X$ if

$$\lim_{x \to \overline{x}} f(x) = f(\overline{x})$$

f is continuous on X if f is continuous at every point $\overline{x} \in X$.

Exercise 2

- 1. f is continuous at $\overline{x} \in X$ if and only if for every open ball J of center $f(\overline{x})$ there exists an open ball B of center \overline{x} such that $f(B \cap X) \subseteq J$.
- 2. f is continuous at $\overline{x} \in X$ if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||x \overline{x}|| < \delta$ and $x \in X \Longrightarrow |f(x) f(\overline{x})| < \varepsilon$.

Proposition 3 (Sequentially continuous function) f is continuous at $\overline{x} \in X$ if and only if f is sequentially continuous at \overline{x} , that is, for every sequence $(x_n)_{n\in\mathbb{N}} \subseteq X$ such that $x_n \to \overline{x}$, we have that

$$f(x_n) \to f(\overline{x})$$

1.2 Differentiability

 $X \subseteq \mathbb{R}^n$ is an **open** set, f is a function from X to \mathbb{R} .

Definition 4 (Differentiable function) f is differentiable at $\overline{x} \in X$ if

- 1. all the partial derivatives of f at \overline{x} exist,
- 2. there exists a function $E_{\overline{x}}$ defined in some open ball $B(0,\varepsilon) \subseteq \mathbb{R}^n$ such that for every $u \in B(0,\varepsilon)$,

$$f(\overline{x} + u) = f(\overline{x}) + \nabla f(\overline{x}) \cdot u + ||u|| E_{\overline{x}}(u)$$

where
$$\lim_{u \to 0} E_{\overline{x}}(u) = 0$$

f is differentiable on X if f is differentiable at every point $\overline{x} \in X$.

Exercise 5 If f is differentiable at \overline{x} , then f is continuous at \overline{x} .

Definition 6 (Directional derivative) Let $v \in \mathbb{R}^n$, $v \neq 0$. The directional derivative $D_v f(\overline{x})$ of f at $\overline{x} \in X$ in the direction v is defined as

$$\lim_{t \to 0^+} \frac{f(\overline{x} + tv) - f(\overline{x})}{t}$$

if this limit exists and it is finite.

Proposition 7 (Differentiable function/Directional derivative) If f is differentiable at $\overline{x} \in X$, then for every $v \in \mathbb{R}^n$ with $v \neq 0$,

$$D_v f(\overline{x}) = \nabla f(\overline{x}) \cdot v$$

1.3 Compactness

X is a subset of \mathbb{R}^n .

Proposition 8 (Compact set/Subsequences) X is compact if and only if for every sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$ there exists a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ of the sequence $(x_n)_{n \in \mathbb{N}}$ such that $(x_{n_k})_{k \in \mathbb{N}}$ converges to some point $\overline{x} \in X$.¹

Proposition 9 (Compact set) X is compact if and only if it is closed and bounded.

Definition 10 (Closed set) X is closed if its complement $C(X) := \mathbb{R}^n \setminus X$ is open.

Proposition 11 (Sequentially closed) X is closed if and only if it is sequentially closed, that is, for every sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$ such that $x_n \to \overline{x}$, we have

 $\overline{x} \in X$

Definition 12 (Bounded set) X is bounded if it is included in some ball, that is, there exists $\varepsilon > 0$ such that for all $x \in X$, $||x|| < \varepsilon$.

¹Let $(x_n)_{n\in\mathbb{N}}$ be a sequence and $(n_k)_{k\in\mathbb{N}}$ be a strictly increasing sequence of natural numbers. The composed sequence $(x_{n_k})_{k\in\mathbb{N}}$ is a subsequence of the sequence $(x_n)_{n\in\mathbb{N}}$.

2 Extreme Value Theorem

Theorem 13 (Extreme Value Theorem/Weierstrass Theorem) Let f be a function from $X \subseteq \mathbb{R}^n$ to \mathbb{R} . If X is a non-empty compact set and f is continuous on X, then

- $\exists x^* \in X \text{ such that } f(x^*) \ge f(x) \text{ for all } x \in X, \text{ and}$
- $\exists x^{**} \in X \text{ such that } f(x^{**}) \leq f(x) \text{ for al } x \in X.$

3 Karush–Kuhn–Tucker Conditions

In this section, we focus on necessary and sufficient conditions in terms of first–order conditions for solving a maximization problem with inequality constraints.

In this section, we assume that

- $C \subseteq \mathbb{R}^n$ is convex and open,
- the following functions f and g_j with j = 1, ..., m are differentiable on C.

$$f: x \in C \subseteq \mathbb{R}^n \longrightarrow f(x) \in \mathbb{R}$$
 and
 $g_j: x \in C \subseteq \mathbb{R}^n \longrightarrow g_j(x) \in \mathbb{R}, \ \forall \ j = 1, ..., m$

Maximization problem

$$\begin{array}{ll} \max & f(x) \\ x \in C \\ \text{subject to} & g_j(x) \ge 0, \ \forall \ j = 1, ..., m \end{array}$$

$$(1)$$

where f is the *objective* function, and g_j with j = 1, ..., m are the *constraint* functions.

The **Karush–Kuhn–Tucker conditions** associated with problem (1) are given below

$$\begin{cases} \nabla f(x) + \sum_{j=1}^{m} \lambda_{j} \nabla g_{j}(x) = 0\\ \lambda_{j} \ge 0, \ \forall \ j = 1, ..., m\\ \lambda_{j} g_{j}(x) = 0, \ \forall \ j = 1, ..., m\\ g_{j}(x) \ge 0, \ \forall \ j = 1, ..., m \end{cases}$$
(2)

where for every $j = 1, ..., m, \lambda_j \in \mathbb{R}$ is called *Lagrange multiplier* associated with the inequality constraint g_j .

Definition 14 Let $x^* \in C$, we say that the constraint j is **binding** at x^* if $g_j(x^*) = 0$. We denote

1. $B(x^*)$ the set of all binding constraints at x^* , that is

 $B(x^*) := \{j = 1, ..., m : g_j(x^*) = 0\}$

- 2. $m^* \leq m$ the number of elements of $B(x^*)$ and
- 3. $g^* := (g_j)_{j \in B(x^*)}$ the following mapping

 $g^*: x \in C \subseteq \mathbb{R}^n \longrightarrow g^*(x) = (g_j(x))_{j \in B(x^*)} \in \mathbb{R}^{m^*}$

Theorem 15 (Karush–Kuhn–Tucker are necessary conditions) Let x^* be a solution to problem (1). Assume that **one** of the following conditions is satisfied.

- 1. For all j = 1, ..., m, g_j is a **linear or affine** function.
- 2. Slater's Condition :
 - for all j = 1, ..., m, g_j is a **concave** function **or** g_j is a **quasiconcave** function with $\nabla g_j(x) \neq 0$ for all $x \in C$, and
 - there exists $\overline{x} \in C$ such that $g_j(\overline{x}) > 0$ for all j = 1, ..., m.

3. Rank Condition : rank $Jg^*(x^*) = m^* \le n$.

Then, there exists $\lambda^* = (\lambda_1^*, ..., \lambda_j^*, ..., \lambda_m^*) \in \mathbb{R}^m_+$ such that (x^*, λ^*) satisfies the Karush–Kuhn–Tucker Conditions (2).

Theorem 16 (Karush–Kuhn–Tucker are sufficient conditions) Suppose that there exists $\lambda^* = (\lambda_1^*, ..., \lambda_j^*, ..., \lambda_m^*) \in \mathbb{R}^m_+$ such that $(x^*, \lambda^*) \in C \times \mathbb{R}^m_+$ satisfies the Karush–Kuhn–Tucker Conditions (2). Assume that

- 1. f is a concave function or f is a quasi-concave function with $\nabla f(x) \neq 0$ for all $x \in C$, and
- 2. g_j is a **quasi-concave** function for all j = 1, ..., m.

Then, x^* is a solution to problem (1).

4 Concavity and quasi-concavity

In this section, we assume that C is a **convex** subset of \mathbb{R}^n and f is a function from C to \mathbb{R} .

Concavity

Definition 17 (Concave function) f is concave if for all $t \in [0,1]$ and for all x and \bar{x} in C,

$$f(tx + (1 - t)\bar{x}) \ge tf(x) + (1 - t)f(\bar{x})$$

Proposition 18 f is concave if and only if the set

 $\{(x,\alpha)\in C\times\mathbb{R}: f(x)\geq\alpha\}$

is a convex subset of \mathbb{R}^{n+1} . The set above is called hypograph of f.

Proposition 19 C is open and f is differentiable on C. f is concave if and only if for all x and \bar{x} in C,

$$f(x) \le f(\bar{x}) + \nabla f(\bar{x}) \cdot (x - \bar{x})$$

Proposition 20 *C* is open and *f* is twice continuously differentiable on *C*. *f* is concave if and only if for all $x \in C$ the Hessian matrix Hf(x)is negative semidefinite, that is, for all $x \in C$

$$v \mathbf{H} f(x) v^T \leq 0, \ \forall \ v \in \mathbb{R}^n$$

Definition 21 (Strictly concave function) f is strictly concave if for all $t \in]0,1[$ and for all x and \bar{x} in C with $x \neq \bar{x}$,

$$f(tx + (1-t)\bar{x}) > tf(x) + (1-t)f(\bar{x})$$

Proposition 22 *C* is open and *f* is differentiable on *C*. *f* is strictly concave if and only if for all *x* and \bar{x} in *C* with $x \neq \bar{x}$,

$$f(x) < f(\bar{x}) + \nabla f(\bar{x}) \cdot (x - \bar{x})$$

Proposition 23 *C* is open and *f* is twice continuously differentiable on *C*. If for all $x \in C$ the Hessian matrix Hf(x) is negative definite, that is, for all $x \in C$

$$v \mathbf{H} f(x) v^T < 0, \ \forall \ v \in \mathbb{R}^n, \ v \neq 0$$

then f is strictly concave.

Quasi-concavity

Definition 24 (Quasi-concave function) f is quasi-concave if and only if for all $\alpha \in \mathbb{R}$ the set

$$\{x \in C : f(x) \ge \alpha\}$$

is a convex subset of \mathbb{R}^n . The set above is called upper contour set of f at α .

Proposition 25 f is quasi-concave if and only if for all $t \in [0, 1]$ and for all x and \bar{x} in C,

$$f(tx + (1 - t)\bar{x}) \ge \min\{f(x), f(\bar{x})\}\$$

Proposition 26 C is open and f is differentiable on C. f is quasiconcave if and only if for all x and \bar{x} in C,

$$f(x) \ge f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot (x - \bar{x}) \ge 0$$

Proposition 27 *C* is open and *f* is differentiable on *C*. If *f* is quasiconcave and $\nabla f(x) \neq 0$ for all $x \in C$, then for all x and \bar{x} in *C* with $x \neq \bar{x}$,

$$f(x) > f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot (x - \bar{x}) > 0$$

Proposition 28 *C* is open and *f* is twice continuously differentiable on *C*. If *f* is quasi-concave, then for all $x \in C$ the Hessian matrix Hf(x)is negative semidefinite on $Ker \nabla f(x)$, that is, for all $x \in C$

$$v \in \mathbb{R}^n \text{ and } \nabla f(x) \cdot v = 0 \Longrightarrow v H f(x) v^T \leq 0$$

Definition 29 (Strictly quasi-concave function) f is strictly quasi-concave if and only if for all $t \in]0, 1[$ and for all x and \bar{x} in C with $x \neq \bar{x}$,

$$f(tx + (1 - t)\bar{x}) > \min\{f(x), f(\bar{x})\}\$$

Proposition 30 C is open and f is differentiable on C.

1. If for all x and \bar{x} in C with $x \neq \bar{x}$,

$$f(x) \ge f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot (x - \bar{x}) > 0$$

then f is strictly quasi-concave.

2. If f is strictly quasi-concave and $\nabla f(x) \neq 0$ for all $x \in C$, then for all x and \bar{x} in C with $x \neq \bar{x}$,

$$f(x) \ge f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot (x - \bar{x}) > 0$$

Proposition 31 *C* is open and *f* is twice continuously differentiable on *C*. If for all $x \in C$ the Hessian matrix Hf(x) is negative definite on $\operatorname{Ker} \nabla f(x)$, that is, for all $x \in C$

$$v \in \mathbb{R}^n, v \neq 0 \text{ and } \nabla f(x) \cdot v = 0 \Longrightarrow v H f(x) v^T < 0$$

then f is strictly quasi-concave.

Remark 32 We remark that

$$\begin{array}{rcl} f \ linear \ or \ affine \ \Rightarrow \ f \ concave \ \Leftarrow \ f \ strictly \ concave \\ & \downarrow & \downarrow \\ f \ quasi-concave \ \Leftarrow \ f \ strictly \ quasi-concave \end{array}$$

We remind the definitions and some properties of negative definite/semidefinite matrices. Let H be a $n \times n$ symmetric matrix.

Definition 33

- 1. *H* is negative semidefinite if $vHv^T \leq 0$ for all $v \in \mathbb{R}^n$.
- 2. *H* is negative definite if $vHv^T < 0$ for all $v \in \mathbb{R}^n$ with $v \neq 0$.

Proposition 34

- 1. *H* has *n* real eigenvalues. We denote $\lambda_1, ..., \lambda_n$ the eigenvalues of *H*.
- 2. *H* is negative semidefinite if and only $\lambda_i \leq 0$ for every i = 1, ..., n.
- 3. *H* is negative definite if and only $\lambda_i < 0$ for every i = 1, ..., n.

Proposition 35

1. If H is negative semidefinite, then $tr(H) \leq 0$ and $det(H) \geq 0$ if n is even, $det(H) \leq 0$ if n is odd.

2. If H is negative definite, then tr(H) < 0 and det(H) > 0 if n is even, det(H) < 0 if n is odd.

We remark that if n = 2, then the conditions stated in the proposition above also are sufficient conditions, that is

- 1. *H* is negative semidefinite if and only if $tr(H) \leq 0$ and $det(H) \geq 0$.
- 2. *H* is negative definite if and only if tr(H) < 0 and det(H) > 0.

References

- Arrow, K.-J., Hurwicz, L., Uzawa, H., 1958. Studies in linear and non-linear programming. Stanford University Press.
- Cass, D., 2000. Non-linear Programming for Economists. Class Notes, Ph.D. Program in Economics, University of Pennsylvania.
- de la Fuente, A., 2005. Mathematical Methods and Models for Economists. Cambridge University Press.
- Mas-Colell, A., Whinston, M. D., Green, J. R., 1995. *Microeconomic Theory*. Oxford University Press.