$\begin{array}{ll} \mbox{Microeconomics 1-Part A: Individual decision making} \\ \mbox{Masters M1 IMMAEF \& MAEF} \end{array}$

TD – Wednesday, October 18, 2023

Consumer Theory

The following exercises should be submitted on Wednesday, October 18.

Exercise 1. Let $(\mathcal{B}, C(\cdot))$ be a choice structure. We remind that \mathcal{B} is a family of non-empty subsets of $X \subseteq \mathbb{R}^L$, that is $\mathcal{B} = \{B : B \neq \emptyset \text{ and } B \subseteq X\}$, and $C(\cdot)$ is a choice rule that assigns a non-empty set C(B) of elements chosen from B, for every $B \in \mathcal{B}$.

- 1. Give the general statement of the Weak Axiom of Revealed Preferences (WARP).
- 2. Let $X = \{x, y, z\}$ and consider the choice structure with $\mathcal{B} = \{\{x, y\}, \{y, z\}, \{x, z\}, X\}$ and $C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}, \text{ and } C(\{x, z\}) = \{z\}.$ Show that this choice structure must violate WARP.
- 3. Show that the general statement of WARP is equivalent to the following property:

Suppose that B and B' are two elements of \mathcal{B} such that $\{x,y\}\subseteq B$ and $\{x,y\}\subseteq B'$. Then, if $x\in C(B)$ and $y\in C(B')$, we must have $\{x,y\}\subseteq C(B)$ and $\{x,y\}\subseteq C(B')$.

Exercise 2. Let L=2 be the number of commodities. As usual, $x(p_1, p_2, \mathbf{w}) = (x_1(p_1, p_2, \mathbf{w}), x_2(p_1, p_2, \mathbf{w}))$ denotes the demand of the consumer. For every commodity $\ell = 1, 2$, the demand of commodity ℓ is given by

 $x_{\ell}(p_1, p_2, \mathbf{w}) = \frac{\mathbf{w}}{p_1 + p_2}$

- 1. Prove that this demand is homogeneous of degree zero.
- 2. Prove that this demand satisfies Walras' Law.
- 3. State the Weak Axiom of Revealed Preferences (WARP) in the framework of the demand.
- 4. Prove that this demand satisfies WARP.