Logic and Sets
 Mid-term exam 2022 (1h)

Name:
QEM/MMEF

Exercise 1 (9pts)

Indicate for each of the following assertions if they are true (T) or false (F).

1. Dogs have 3 legs if and only if cows have 5 legs
2. The negation of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
3. The negation of $(p \rightarrow q) \wedge(p \vee \neg q)$ is $(p \wedge \neg q) \vee(\neg p \wedge q)$
4. The negation of $[\forall n$ in the set of odd numbers, $\exists x \in \mathbb{R}, \sqrt{x}=2 n+1]$ is [$\exists n$ in the set of even numbers, $\forall x \in \mathbb{R}, \sqrt{x} \neq 2 n+1$]
5. The negation of $[\forall x>0, \exists y<0, \forall z \in \mathbb{R}, \forall t \in \mathbb{R}, f(x, y, z)=g(t)$ or $x+y+z=t]$ is $[\exists x>0, \forall y<0, \exists z \in \mathbb{R}, \exists t \in \mathbb{R}, f(x, y, z) \neq g(t)$ and $x+y+z \neq t]$
6. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists z \in \mathbb{R}, p(x, y, z)$ implies $\forall x \in \mathbb{R}, \exists z \in \mathbb{R}, \forall y \in \mathbb{R}, p(x, y, z)$
7. $\exists z \in \mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{2}+y^{2}=z^{2}$.
8. $A \Delta B=(A \cup B) \backslash(A \cap B)$
9. $\left(A \cup A^{\prime}\right) \times\left(B \cup B^{\prime}\right)=(A \times B) \cup\left(A^{\prime} \times B^{\prime}\right)$
10. $A^{c} \cap B^{c}=A \cup B$
11. $A \cup B=B \Leftrightarrow A \subseteq B$
12. $\{a,\{a\},\{a, b\}\}=\{\{a, a\}, a,\{b, a\}\}$
13. $a \in\{\{a\}, b,\{a, b\}\}$
14. $\{a, b\} \subseteq\{a,\{a, b\}\}$
15. $\mathcal{P}(\emptyset)=\{\emptyset,\{\emptyset\}\}$
16. $\emptyset \subseteq\{a,\{b\}\}$
17. The function $f:] 0, \infty[\rightarrow \mathbb{R}$ defined by $f(x)=\log (x)$ is surjective.
18. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|$ is injective.

Exercise 2 (8pts)

1. Show by contraposition that for any function $f: X \rightarrow Y$, for any $A, B \subseteq X$, $f(A) \cap f(B)=\emptyset$ implies $A \cap B=\emptyset$. Is the converse true? Justify your answer.
2. Show by contradiction that there is no integer $a, b \in \mathbb{Z}$ such that $15 a+3 b=5$.
3. Show by induction that for any $n \geq 1, \sum_{k=1}^{n} 2^{k}=2^{n+1}-2$.
4. Suppose U is the universal set and take $A, B \subseteq U$. Show that $A \cup B=B \Leftrightarrow$ $B \cup A^{c}=U$.

Exercise 3 (3pts)

Write the truth tables of $(p \rightarrow \neg(p \vee q)) \rightarrow(\neg p \wedge q)$ and $((p \rightarrow q) \rightarrow(q \wedge \neg r)) \rightarrow \neg p$.

