Université Paris I Panthéon-Sorbonne

Lecture Notes
Master Methematical Models in Economics and Finance (MMEF)

BASIC NOTIONS OF LINEAR ALGEBRA

(short summary)

Michel GRABISCH

1 Vector spaces

A vector space over \mathbb{R} is a set V closed under addition (associative and commutative, with a neutral element $\overrightarrow{0}$ (the zero vector), and additive inverses), and scalar multiplication, i.e., multiplication of a vector by a real number, satisfying the following properties for all $a, b \in \mathbb{R}$ and $x, y \in V$:

$$
a(x+y)=a x+a y, \quad(a+b) x=a x+b y, \quad a(b x)=(a b) x, \quad 1 x=x .
$$

In the whole document, we will restrict to vector spaces which are subsets of \mathbb{R}^{n}, for some $n \in \mathbb{N}$.
Vectors are represented as columns, e.g., $x=\left(\begin{array}{c}1 \\ 4 \\ 0 \\ -2\end{array}\right)$.
A subspace of a vector space V is a subset of V which is a vector space.
A linear combination of vectors $x_{1}, \ldots, x_{k} \in V$ is any expression $\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}$ with $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$. The span of x_{1}, \ldots, x_{k} is the set of all their linear combinations:

$$
\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}=\left\{\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}: \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}\right\} .
$$

$x_{1}, \ldots, x_{k} \in V$ are linearly dependent if there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$, not all zero, such that

$$
\sum_{i=1}^{k} \alpha_{i} x_{i}=\overrightarrow{0} \quad \text { (zero vector) }
$$

$x_{1}, \ldots, x_{k} \in V$ are linearly independent if they are not linearly dependent, i.e., for all $\alpha_{1}, \ldots, \alpha_{k} \in$ \mathbb{R},

$$
\sum_{i=1}^{k} \alpha_{i} x_{i}=\overrightarrow{0} \Rightarrow \alpha_{1}=\cdots=\alpha_{k}=0
$$

$\left\{x_{1}, \ldots, x_{k}\right\}$ is a basis of V if $\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}=V$ and x_{1}, \ldots, x_{k} are linearly independent. Consequently, any $v \in V$ has a unique expression as a linear combination of x_{1}, \ldots, x_{k}. The dimension of V is the size (cardinality) of a basis of V.

2 Matrices

A $m \times n$ matrix is an array of numbers in \mathbb{R} with m rows and n columns. The usual notation is $A=\left[a_{i j}\right]$, where $a_{i j}$ is the entry of A at row i and column j.

The transpose of a $m \times n$ matrix $A=\left[a_{i j}\right]$ is the $n \times m$ matrix $A^{T}=\left[a_{j i}\right]$.
The trace of a $m \times n$ matrix $A=\left[a_{i j}\right]$ is defined by

$$
\operatorname{tr} A=\sum_{i=1}^{k} a_{i i}, \quad \text { with } k=\min (m, n) .
$$

Any $m \times n$ matrix A defines a linear mapping from \mathbb{R}^{n} to \mathbb{R}^{m} by:

$$
x \in \mathbb{R}^{n} \mapsto A x=\left[\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} x_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{m j} x_{j}
\end{array}\right] \in \mathbb{R}^{m} .
$$

The range of A is the range (image) of the corresponding linear mapping, i.e.,

$$
\text { range } A=\left\{y \in \mathbb{R}^{m}: y=A x \text { for some } x \in \mathbb{R}^{n}\right\}
$$

The null space or kernel of A is defined by

$$
\operatorname{Ker} A=\left\{x \in \mathbb{R}^{n}: A x=\overrightarrow{0}\right\}
$$

A fundamental result (called rank-nullity theorem) says that

$$
\operatorname{dim}(\operatorname{range} A)+\operatorname{dim}(\operatorname{Ker} A)=n
$$

Matrix operations:
(i) For $A, B \in \mathbb{R}^{m \times n}$ with $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right], A+B=\left[a_{i j}+b_{i j}\right]$.
(ii) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}, A B=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right] \in \mathbb{R}^{m \times p}$.

The identity matrix of order n, denoted by I_{n}, is a $n \times n$ matrix given by

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Remark 1. (i) If $x, y \in \mathbb{R}^{n}, x^{T} y \in \mathbb{R}$ and $x y^{T} \in \mathbb{R}^{n \times n}$, as a vector is considered as an $n \times 1$ matrix.
(ii) Let $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$. Then $A x \in \mathbb{R}^{m}$ is a linear combination of the columns of A, while $y^{T} A \in \mathbb{R}^{n}$ is a linear combination of the rows of A.

3 Determinants

For square matrices, determinants are defined inductively by:

- For a 1×1 matrix $\left[a_{11}\right]: \operatorname{det}\left[a_{11}\right]=a_{11}$.
- Otherwise,

$$
\operatorname{det} A=\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det} A_{i k}=\sum_{k=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} A_{k j},
$$

for arbitrary i, j, and $A_{i k}$ is the matrix A without row i and column k.
For example, with $n=2$:

$$
\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{12} a_{21}
$$

Important results:
(i) $\operatorname{det} A^{T}=\operatorname{det} A$
(ii) $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$
(iii) $\operatorname{det} I_{n}=1$
(iv) $\operatorname{det} A=0$ if and only if a subset of the row vectors (equiv., column vectors) of A are linearly dependent.
(v) If a row of A is $\overrightarrow{0}^{T}$, then $\operatorname{det} A=0$.

To each matrix $A \in \mathbb{R}^{m \times n}$ corresponds a unique reduced row echelon form ($R R E F$) (also called Hermite normal form) such that:
(i) Any zero row occurs at the bottom of the matrix
(ii) The leading entry (i.e., the first nonzero entry) of any nonzero row is 1
(iii) All other entries in the column of a leading entry are zero
(iv) The leading entries occur in a stair step pattern, from left to right: leading entry $a_{i k} \Rightarrow$ leading entry $a_{i+1, \ell}$ (if it exists) with $\ell>k$.

Example of a RREF:

$$
A=\left[\begin{array}{cccccc}
0 & 1 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The RREF is obtained from a matrix by
(i) interchanging rows
(ii) multiply a row by a nonzero scalar
(iii) a row is replaced by the sum of itself and another row multiplied by a scalar.

Important result: for a matrix $A \in \mathbb{R}^{n \times n}$, $\operatorname{det} A \neq 0$ if and only if its $R R E F$ is I_{n}.

4 Rank and nonsingularity ; inverse

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of its range, i.e., the cardinality of a largest linearly independent set of columns (equiv., of rows) of A.

Important results:

- $\operatorname{rank} A=\operatorname{rank} A^{T}$
- $\operatorname{rank} A$ is the rank of its RREF, which is the number of leading entries.

Theorem 1 (characterization of the rank). Let A be a $m \times n$ matrix. The following are equivalent:
(i) $\operatorname{rank} A=k$
(ii) k, and no more than k, rows of A are linearly independent
(iii) k, and no more than k, columns of A are linearly independent
(iv) Some $k \times k$ submatrix of A has a nonzero determinant, and any $(k+1) \times(k+1)$ submatrix has a zero-determinant
(v) $k=n-\operatorname{dim}(\operatorname{Ker} A)$ (rank-nullity theorem).

A matrix $A \in \mathbb{R}^{m \times n}$ is nonsingular if $A x=\overrightarrow{0} \Leftrightarrow x=\overrightarrow{0}$. Otherwise, A is singular. Observe that if $m<n$ then A is singular.

A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that $A^{-1} A=$ $A A^{-1}=I_{n}$. Note that $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$.

Theorem 2 (characterization of nonsingularity). Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:
(i) A is nonsingular
(ii) A^{-1} exists
(iii) $\operatorname{rank} A=n$
(iv) rows are linearly independent
(v) columns are linearly independent
(vi) $\operatorname{det} A \neq 0$
(vii) $\operatorname{dim}($ range $A)=n$
(viii) $\operatorname{dim}(\operatorname{Ker} A)=0$

5 Linear systems

A linear system of equalities has the form

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+\cdots & +a_{1 n} x_{n}=b_{1} \\
\vdots & & \vdots \\
a_{m 1} x_{1}+\cdots & +a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

with $a_{i j}, b_{j} \in \mathbb{R}$ for all i, j. Using matrix notation, this can be rewritten as

$$
A x=b
$$

with $A=\left[a_{i j}\right], b^{T}=\left[\begin{array}{lll}b_{1} & \cdots & b_{m}\end{array}\right]$, and $x^{T}=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$.
The Gauss-Jordan elimination method, which leads to the set of solutions of the system, consists in putting the augmented matrix $[A b]$ in RREF. Indeed, $A_{1} x=b_{1}$ and $A_{2} x=b_{2}$ have the same set of solutions $\Leftrightarrow\left[A_{1} b_{1}\right]$ and $\left[A_{2} b_{2}\right]$ have the same RREF.

A linear system is consistent if there exists at least one solution. Otherwise, the linear system is inconsistent.

Theorem 3 (characterization of consistency). Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$. The linear system $A x=b$ is consistent if and only if $\operatorname{rank}[A b]=\operatorname{rank} A$.
(set of solutions) Suppose $A x=b$ is consistent, with solution x_{0}. Observe that x_{0}^{\prime} is solution iff $A x_{0}^{\prime}=b=A x_{0}$ iff $A\left(x_{0}^{\prime}-x_{0}\right)=0$ iff $x_{0}^{\prime}-x_{0} \in \operatorname{Ker} A$. Consequently, the set of solutions has the form

$$
\left\{x_{0}\right\}+\operatorname{Ker} A
$$

where " + " is understood in the sense of subspaces. Therefore, the dimension of the (affine) subspace of solutions is $\operatorname{dim}(\operatorname{Ker} A)$.

Theorem 4 (characterization of consistent square linear systems). Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:
(i) $A x=b$ is consistent for each $b \in \mathbb{R}^{n}$
(ii) $A x=\overrightarrow{0}$ has a unique solution, which is $x=\overrightarrow{0}$
(iii) $A x=b$ has a unique solution for each $b \in \mathbb{R}^{n}$
(iv) A is nonsingular
(v) A^{-1} exists
(vi) $\operatorname{rank} A=n$.

If one of the above assertions holds, then the unique solution is $x=A^{-1} b$.
(back to Gauss-Jordan elimination) suppose $[A b]$ of the consistent linear system $A x=b$ has been put in RREF. According to Theorem 3, the number of leading variables (entries) is the rank of A, the remaining variables are the free variables, whose number gives the dimension of $\operatorname{Ker} A$.
$A x=b$ is inconsistent if and only if in the RREF of $[A b]$ there is a row of the form $\left[\begin{array}{llll}0 & \cdots & 0 & a\end{array}\right]$ with $a \neq 0$.

Example 1. Consider the linear system

$$
\left\{\begin{array}{c}
2 x+y-z+3 t=1 \\
4 x+2 y-z+4 t=5 \\
2 x+y+t=4
\end{array}\right.
$$

The augmented matrix is

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 1 \\
4 & 2 & -1 & 4 & 5 \\
2 & 1 & 0 & 1 & 4
\end{array}\right]
$$

Let us put it in echelon form ${ }^{1}$. Subtracting 2 times row 1 from row 2 , and subtracting row 1 from row 3 yield

$$
\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 1 \\
0 & 0 & 1 & -2 & 3 \\
0 & 0 & 1 & -2 & 3
\end{array}\right]
$$

Now, adding row 2 and minus row 3 yields

$$
\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 1 \\
0 & 0 & 1 & -2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Finally, adding the two first rows yields

$$
\left[\begin{array}{ccccc}
2 & 1 & 0 & 1 & 4 \\
0 & 0 & 1 & -2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

[^0]Then the system has a solution. There are two free variables y and t, therefore the dimension of the subspace of solutions is 2 . Let us express the set of solutions. The system is

$$
\left\{\begin{aligned}
2 x+y+t & =4 \\
z-2 t & =3
\end{aligned}\right.
$$

Putting the free variables on the right handside yields:

$$
\left\{\begin{array}{rl}
2 x & =4-y-t \\
& z
\end{array}=3-2 t\right.
$$

Hence, finally the set of solutions is given by

$$
\left\{(x, y, z, t) \in \mathbb{R}^{4}: x=2-\frac{1}{2} y-\frac{1}{2} t, z=3+2 t, y, t \in \mathbb{R}\right\}
$$

In particular, $(2,0,3,0)$ is a solution.

6 Introduction to eigenvalues and eigenvectors

Basic definitions. Given a square matrix $A \in \mathbb{C}^{n \times n}$, if there exists a scalar $\lambda \in \mathbb{C}$ and a nonzero vector $x \in \mathbb{C}^{n}$ such that

$$
A x=\lambda x
$$

then λ is an eigenvalue of A and x is an eigenvector of A. We say that (λ, x) is an eigenpair and the eigenspace of A associated to λ is the vector subspace $\left\{x \in \mathbb{C}^{n}: A x=\lambda x\right\}$.

Eigenvectors of distinct eigenvalues are linearly independent.
$y \in \mathbb{C}^{n}$ is a left eigenvector of A associated to λ if $y^{*} A=\lambda y^{*}$, where ($)^{*}$ indicates the conjugate transpose.

The spectrum of A, denoted by $\sigma(A)$, is the set of all eigenvalues. Remark that $\overrightarrow{0} \in \sigma(A)$ iff A is singular. The spectral radius of A is defined by

$$
\rho(A)=\max \{|\lambda|, \lambda \in \sigma(A)\}
$$

Finding eigenvalues. Eigenvalues can be found as the solutions of the characteristic polynomial of A :

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=0
$$

Indeed, $A x=\lambda x$ is equivalent to the system $\left(A-\lambda I_{n}\right) x=\overrightarrow{0}$, which can admit a nonzero solution x if and only if $A-\lambda I_{n}$ is singular, i.e., with zero determinant.

The characteristic polynomial is a polynomial in λ of degree n, which therefore admits n (complex) solutions, not necessarily distinct.

Important properties:

- The trace of A is the sum of the eigenvalues: $\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}$
- The determinant of A is the product of the eigenvalues: $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$

Multiplicities. Let $\lambda_{1}, \ldots, \lambda_{q}$ be the distinct eigenvalues of A. The algebraic multiplicity α_{i} of λ_{i} is the multiplicity of λ_{i} as a root of the characteristic polynomial. It holds

$$
\sum_{i=1}^{q} \alpha_{i}=n
$$

The geometric multiplicity γ_{i} of λ_{i} is the dimension of its eigenspace (dimension of the kernel of $\left.A-\lambda_{i} I_{n}\right)$. We have

$$
1 \leqslant \gamma_{i} \leqslant \alpha_{i}, \quad i=1, \ldots, q
$$

The eigenvalue λ_{i} is simple if $\alpha_{i}=1$. It is semi-simple if $\alpha_{i}=\gamma_{i}$.
Diagonalization. A is said to be diagonalizable if there exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that $S A S^{-1}$ is a diagonal matrix.

Let $A \in \mathbb{C}^{n \times n}$, and $\lambda_{1}, \ldots, \lambda_{q}$ be its (distinct) eigenvalues. Then A is diagonalizable iff $\sum_{i=1}^{q} \gamma_{i}=n$.

This amounts to say that A is diagonalizable if and only if there exists n linearly independent eigenvectors x^{1}, \ldots, x^{n}, in which case $S=\left[x^{1} \cdots x^{n}\right]$, and

$$
S A S^{-1}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

Jordan decomposition. If a matrix is not diagonalizable, it can be always put into its Jordan form. A Jordan block of size m is a $m \times m$ matrix of the form

$$
J_{m}(\lambda)=\left[\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right]
$$

and $J_{1}(\lambda)=[\lambda]$. A Jordan matrix is block-diagonal and each block is a Jordan block.
Theorem 5 (Jordan decomposition). Let $T \in \mathbb{C}^{n \times n}$. There exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that

$$
T=S\left[\begin{array}{llll}
J_{m_{1}}\left(\lambda_{1}\right) & & & \\
& J_{m_{2}}\left(\lambda_{2}\right) & & \\
& & \ddots & \\
& & & J_{m_{q}}\left(\lambda_{q}\right)
\end{array}\right] S^{-1}
$$

with $\sum_{i=1}^{q} m_{i}=n, \lambda_{1}, \ldots, \lambda_{q}$ are the eigenvalues of T, and the geometric multiplicity of λ_{i} is equal to the number of blocks $J_{m_{i}}\left(\lambda_{i}\right)$, while the algebraic multiplicity is the sum of the sizes of blocks $J_{m_{i}}\left(\lambda_{i}\right)$.

If all eigenvalues are semi-simple, then the columns of S are the right eigenvectors, while the rows of S^{-1} are the left eigenvectors.

Let $T \in \mathbb{C}^{m \times m}$ with Jordan reduction $S J_{T} S^{-1}$. Then

$$
T^{k}=S J_{T}^{k} S^{-1}
$$

A square matrix A is semi-convergent if $\lim _{k \rightarrow \infty} A^{k}$ exists, and it is convergent if in addition this limit is the matrix 0 .

We have the following properties:

- A Jordan block is convergent iff $|\lambda|<1$;
- A Jordan block of size 1 is semi-convergent iff $|\lambda|<1$ or $\lambda=1$.

From this we deduce the convergence of T^{k} :
Theorem 6. - T is convergent iff $\rho(T)<1$;

- T is semi-convergent iff either $\rho(T)<1$ or 1 is a semisimple eigenvalue and all other eigenvalues have modulus less than 1 .

[^0]: ${ }^{1}$ In putting in RREF, to solve linear systems, it is not necessary to make the leading entry equal to 1.

