Mathematics of Insurance and Risk Tutorial classes

Exercise sheet for Market Risk Measures

Noufel FRIKHA *

Exercise 1: Minimum variance portfolio with a twist (Exam 2019)

Fix $d \in \mathbb{N}$ and consider *d*-risky assets (S^1, \ldots, S^d) such that their risky excess returns are assumed to follow a multivariate Gaussian $\mathcal{N}(m, \Sigma)$, with mean vector $m \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{S}^d_+$. An investor seeks to solve the following optimization problem to find the optimal vector of weights $w = (w_1, \ldots, w_d)^\top$ invested in the stocks (S^1, \ldots, S^d) :

$$\min_{w \in \mathbb{R}^d} \quad \frac{1}{2} w^\top \Sigma w
\text{subject to} \quad e^\top w = 1.$$
(1)

Here e is the vector of ones in \mathbb{R}^d , i.e. all of its components are equal to one and \top denotes the transpose operation.

Classical Minimum Variance Portfolio: For questions 1 to 5, we assume that Σ is invertible.

- 1. Justify the appellation 'minimum variance portfolio'?
- 2. Justify that problem (1) is equivalent to the following problem

$$\max_{\beta \in \mathbb{R}} \min_{w \in \mathbb{R}^d} \frac{1}{2} w^\top \Sigma w - \beta (e^\top w - 1).$$
(2)

3. Solve the optimization problem and show that the minimum variance portfolio $w_{\rm MV}$ is given by

$$w_{\rm MV} = \frac{\Sigma^{-1}e}{e^{\top}\Sigma^{-1}e}.$$

- 4. What is the Sharpe ratio of $w_{\rm MV}$?
- 5. Is the invertibility assumption of Σ satisfied in practice? Justify.

Minimum Variance Portfolio with an l^2 -twist: From now on we no longer assume that Σ is invertible and we consider the previous optimization problem but under an additional l^2 -constraint on the weights:

$$\min_{w \in \mathbb{R}^d} \qquad \frac{1}{2} w^\top \Sigma w
\text{subject to} \quad e^\top w = 1 \quad \text{and} \quad w^\top w \le c,$$
(3)

^{*}noufel.frikha@univ-paris1.fr

where c > 0 is a given constant.

- 6. Prove that the problem does not admit a solution if c < 1/d.
- 7. Justify that problem (3) is equivalent to the following maximization problem:

$$\max_{\gamma \in \mathbb{R}_+} \max_{\beta \in \mathbb{R}} \min_{w \in \mathbb{R}^d} \frac{1}{2} w^\top \Sigma w - \beta (e^\top w - 1) + \gamma (w^\top w - c)$$
(4)

8. Keeping $\gamma > 0$ fixed, show that the solution to the inner minimization problem is given by

$$\widetilde{w}_{\mathrm{MV}}(\gamma) = \frac{\Sigma(\gamma)^{-1}e}{e^{\top}\Sigma(\gamma)^{-1}e}$$

where $\Sigma(\gamma)$ is a $d \times d$ -matrix to be determined in terms of Σ and γ . Justify that $\Sigma(\gamma)$ is invertible.

9. What is the advantage of introducing the l^2 -constraint?

Exercise 2: Pareto distributions and VaR

Let X, Y be two independent random variables following a Pareto distribution (1, 1), meaning that the density is given by

$$f(x) = \mathbf{1}_{x \ge 0} \frac{1}{(1+x)^2}, \quad x \in \mathbb{R}.$$

1. Verify that f is indeed a density function and that

$$\mathbb{P}(X \ge t) = \frac{1}{1+t}, \quad t \ge 0.$$

- 2. Compute $\operatorname{VaR}_{\alpha}(X)$ for $\alpha \in (0, 1)$.
- 3. Compute $\mathbb{P}(X + Y \ge t)$, for $t \ge 0$.
- 4. Compare $\operatorname{VaR}_{\alpha}(X+Y)$ and $\operatorname{VaR}_{\alpha}(X) + \operatorname{VaR}_{\alpha}(Y)$, for any $\alpha \in (0,1)$.
- 5. Comment.

Exercise 3: On spherical distributions (Exam 2019)

Fix $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, $d \in \mathbb{N}$. We will denote by \top the transpose operation and by $||t|| = \sqrt{t^{\top}t} = \sqrt{t_1^2 + t_2^2 + \ldots + t_d^2}$ the euclidean norm of a vector $t = (t_1, \ldots, t_d)^{\top} \in \mathbb{R}^d$. For a *d*-dimensional vector-valued random variable $X = (X_1, \ldots, X_d)^{\top}$ we denote by ϕ_X its characteristic function, that is

$$\phi_X(t) = \mathbb{E}\left[\exp(it^\top X)\right], \quad t \in \mathbb{R}^d.$$

We say that the *d*-dimensional vector $X = (X_1, \ldots, X_d)^{\top}$ has a spherical distribution if there exists a function $\psi : \mathbb{R} \to \mathbb{R}$ such that its characteristic function satisfies

$$\phi_X(t) = \psi(t^{\top}t) = \psi(t_1^2 + t_2^2 + \ldots + t_d^2).$$

We will write $X \sim S_d(\psi)$ to denote that X has a spherical distribution with characteristic function $\psi(t^{\top}t)$. Throughout this exercise we fix $X \sim S_d(\psi)$ for some function ψ and we define the \mathbb{R}^d -valued random variable

$$Y = \mu + CX,\tag{5}$$

where $\mu \in \mathbb{R}^d$ and $C \in \mathbb{R}^{d \times d}$.

- 1. Let $Z \sim \mathcal{N}(0, I_d)$, where I_d is the identity matrix. Show that $Z \sim S_d(\psi_0)$ for a function ψ_0 to be determined.
- 2. Fix $a \in \mathbb{R}^d$. Show that

$$a^{\top}X \stackrel{a}{=} ||a||X_1,$$

where $\stackrel{d}{=}$ stands for the equality in distribution and we recall that X_1 is the first component of the vector X.

3. Deduce that

$$a^{\top}Y \stackrel{d}{=} a^{\top}\mu + \|C^{\top}a\|X_1,$$

for all $a \in \mathbb{R}^d$.

Part 1. Value-at-Risk. Fix $\alpha \in (0, 1)$ and set d = 2.

- 4. Justify that $\operatorname{VaR}_{\alpha}(U) = \operatorname{VaR}_{\alpha}(V)$, for any two random variables U and V such that $U \stackrel{d}{=} V$.
- 5. Deduce that

$$\operatorname{VaR}_{\alpha}(a^{\top}Y) = a^{\top}\mu + \|C^{\top}a\|\operatorname{VaR}_{\alpha}(X_1),$$

for all $a \in \mathbb{R}^d$.

- 6. Using the above, show that $\operatorname{VaR}_{\alpha}(Y_1 + Y_2) \leq \operatorname{VaR}_{\alpha}(Y_1) + \operatorname{VaR}_{\alpha}(Y_2)$.
- 7. What is the financial interpretation of the previous inequality? Does it hold for more general distributions Y?

Part 2. Optimization problem. More generally, let $d \ge 2$ and and consider d-risky assets (S^1, \ldots, S^d) such that their risky excess returns are assumed to follow the distribution Y as in (5). We seek to find the optimal vector of weights $w = (w_1, \ldots, w_d)^{\top}$ invested in the stocks (S^1, \ldots, S^d) minimizing the Value-at-Risk of the portfolio:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \operatorname{VaR}_{\alpha}(w^{\top}Y)$$
subject to $e^{\top}w = 1 \quad \mu^{\top}w = r$
(6)

for a fixed level of returns r > 0, and $e = (1, ..., 1)^{\top}$ the vector of ones in \mathbb{R}^d .

8. Show that the minimization problem (6) is equivalent to

$$\min_{w \in \mathbb{R}^d} \quad \frac{1}{2} w^\top \Sigma w$$
 subject to $e^\top w = 1.$

where Σ is a $d \times d$ -matrix to be determined.

- 9. What problem do you recognize? Find the optimal vector of weights w^* .
- 10. Can we replace $\operatorname{VaR}_{\alpha}$ in (6) by more general risk measures ρ ? What properties should ρ satisfy to obtain the same conclusions? Does it work for the expected shortfall?

Exercise 4: Value-at-Risk (Exam 2019)

Let X denote a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which corresponds to the losses of a portfolio. Recall that the Value-at-Risk VaR_{α}(X) of the portfolio X for the threshold α is defined by

$$\operatorname{VaR}_{\alpha}(X) = F_X^-(\alpha),$$

where F_X^- is given by

$$F_X^-(y) = \inf\{x \in \mathbb{R} : F_X(x) \ge y\}, \quad y \in (0,1),$$

and F_X is the cumulative distribution function of X.

- 1. Show that F^- is non-decreasing and deduce that for all $\alpha_1 \leq \alpha_2$, $\operatorname{VaR}_{\alpha_1}(X) \leq \operatorname{VaR}_{\alpha_2}(X)$.
- 2. Show how this result can be deduced from a graph on the Value-at-Risk, under a suitable assumption to be specified.

From now on, we assume that $X \sim \mathcal{N}(\mu, \sigma^2)$ for some $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}$. Fix a threshold $\alpha \in (0, 1), n \in \mathbb{N}$ and let X_1, \ldots, X_n denote n independent observations of X, i.e. $X_i \sim \mathcal{N}(\mu, \sigma^2), i = 1 \ldots, n$. We denote by $L_n(\mu, \sigma^2)$ the likelihood function of (X_1, \ldots, X_n) and we set $l_n(\mu, \sigma^2) := \log L_n(\mu, \sigma^2)$.

3. Show that

$$\operatorname{VaR}_{\alpha}(X) = \mu + \sigma z_{\alpha}$$

where $z_{\alpha} = F_{\mathcal{N}(0,1)}^{-}(\alpha)$ is the α -quantile of a standard Gaussian $\mathcal{N}(0,1)$.

4. Show that

$$l_n(\mu, \sigma^2) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2.$$

- 5. Derive the maximum likelihood estimators $(\hat{\mu}, \hat{\sigma}^2)$ for (μ, σ^2) and deduce an estimator for $\operatorname{VaR}_{\alpha}(X)$.
- 6. What are the advantages and disadvantages of this method? Explain alternative methods correcting these issues.

Exercise 5: Wang risk measures (Exam 2019)

Let X be a non-negative random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by \mathcal{G} the following set of functions

 $\mathcal{G} = \{g : [0,1] \to [0,1] \text{ non-decreasing and right-continuous such that } g(0) = 0 \text{ and } g(1) = 1\}.$

For any $g \in \mathcal{G}$, we define ρ_g by

$$\rho_g(X) = \int_0^\infty g(1 - F_X(x)) dx,$$

where F_X is the cumulative distribution function of X.

- 1. Justify that ρ_g can be considered as a risk measure.
- 2. Verify that id : $y \mapsto y$ belongs to \mathcal{G} and show that $\rho_{id}(X) = \mathbb{E}[X]$.

- 3. Fix $\alpha \in (0,1)$. Verify that $g_{\alpha} : y \mapsto \mathbf{1}_{\{y \ge 1-\alpha\}}$ belongs to \mathcal{G} and compute $\rho_{g_{\alpha}}(X)$.
- 4. We recall that for any non-decreasing and right-continuous function we can define its Stieltjes measure dg given by dg((s,t]) = g(t) g(s) so that we have $g(t) = g(s) + \int_s^t dg(u)$, for all $s \leq t$. Show that, for all $g \in \mathcal{G}$,

$$\rho_g(X) = \int_0^1 \operatorname{VaR}_{1-\alpha}(X) dg(\alpha).$$

- 5. Fix $g \in \mathcal{G}$. Show that ρ_g is invariant by translation, positive homogeneous and monotone.
- 6. Is ρ_g sub-additive for all $g \in \mathcal{G}$? Justify.
- 7. Let $g \in \mathcal{G}$ twice differentiable with continuous first and second derivatives. Assume that F_X is continuous.
 - (a) Recall the definition of the expected shortfall $\text{ES}_{\alpha}(X)$ and show that

$$\mathrm{ES}_{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{p}(X) dp, \quad \alpha \in (0,1)$$

(b) Show that

$$\rho_g(X) = -\int_0^1 \mathrm{ES}_{1-\xi}(X)\xi g''(\xi)d\xi + g'(1)\mathbb{E}[X].$$

- (c) Deduce that ρ_g is sub-additive if g is concave.
- (d) What can be said on ρ_g when g is concave?