Mathematics of Insurance and Risk Tutorial classes

Exercise sheet for Market Risk Measures

Noufel FRIKHA *

Exercise 1: Minimum variance portfolio with a twist (Exam 2019)

Fix $d \in \mathbb{N}$ and consider d-risky assets $\left(S^{1}, \ldots, S^{d}\right)$ such that their risky excess returns are assumed to follow a multivariate Gaussian $\mathcal{N}(m, \Sigma)$, with mean vector $m \in \mathbb{R}^{d}$ and covariance matrix $\Sigma \in \mathbb{S}_{+}^{d}$. An investor seeks to solve the following optimization problem to find the optimal vector of weights $w=\left(w_{1}, \ldots, w_{d}\right)^{\top}$ invested in the stocks $\left(S^{1}, \ldots, S^{d}\right)$:

$$
\begin{array}{ll}
\min _{w \in \mathbb{R}^{d}} & \frac{1}{2} w^{\top} \Sigma w \tag{1}\\
\text { subject to } & e^{\top} w=1
\end{array}
$$

Here e is the vector of ones in \mathbb{R}^{d}, i.e. all of its components are equal to one and T denotes the transpose operation.
Classical Minimum Variance Portfolio: For questions 1 to 5 , we assume that Σ is invertible.

1. Justify the appellation 'minimum variance portfolio'?
2. Justify that problem (1) is equivalent to the following problem

$$
\begin{equation*}
\max _{\beta \in \mathbb{R}} \min _{w \in \mathbb{R}^{d}} \frac{1}{2} w^{\top} \Sigma w-\beta\left(e^{\top} w-1\right) . \tag{2}
\end{equation*}
$$

3. Solve the optimization problem and show that the minimum variance portfolio w_{MV} is given by

$$
w_{\mathrm{MV}}=\frac{\Sigma^{-1} e}{e^{\top} \Sigma^{-1} e}
$$

4. What is the Sharpe ratio of w_{MV} ?
5. Is the invertibility assumption of Σ satisfied in practice? Justify.

Minimum Variance Portfolio with an l^{2}-twist: From now on we no longer assume that Σ is invertible and we consider the previous optimization problem but under an additional l^{2}-constraint on the weights:

$$
\begin{array}{ll}
\min _{w \in \mathbb{R}^{d}} & \frac{1}{2} w^{\top} \Sigma w \tag{3}\\
\text { subject to } & e^{\top} w=1 \quad \text { and } \quad w^{\top} w \leq c,
\end{array}
$$

[^0]where $c>0$ is a given constant.
6. Prove that the problem does not admit a solution if $c<1 / d$.
7. Justify that problem (3) is equivalent to the following maximization problem:
\[

$$
\begin{equation*}
\max _{\gamma \in \mathbb{R}_{+}} \max _{\beta \in \mathbb{R}} \min _{w \in \mathbb{R}^{d}} \frac{1}{2} w^{\top} \Sigma w-\beta\left(e^{\top} w-1\right)+\gamma\left(w^{\top} w-c\right) \tag{4}
\end{equation*}
$$

\]

8. Keeping $\gamma>0$ fixed, show that the solution to the inner minimization problem is given by

$$
\widetilde{w}_{\mathrm{MV}}(\gamma)=\frac{\Sigma(\gamma)^{-1} e}{e^{\top} \Sigma(\gamma)^{-1} e}
$$

where $\Sigma(\gamma)$ is a $d \times d$-matrix to be determined in terms of Σ and γ. Justify that $\Sigma(\gamma)$ is invertible.
9. What is the advantage of introducing the l^{2}-constraint?

Exercise 2: Pareto distributions and VaR

Let X, Y be two independent random variables following a Pareto distribution $(1,1)$, meaning that the density is given by

$$
f(x)=\mathbf{1}_{x \geq 0} \frac{1}{(1+x)^{2}}, \quad x \in \mathbb{R} .
$$

1. Verify that f is indeed a density function and that

$$
\mathbb{P}(X \geq t)=\frac{1}{1+t}, \quad t \geq 0
$$

2. Compute $\operatorname{VaR}_{\alpha}(X)$ for $\alpha \in(0,1)$.
3. Compute $\mathbb{P}(X+Y \geq t)$, for $t \geq 0$.
4. Compare $\operatorname{VaR}_{\alpha}(X+Y)$ and $\operatorname{VaR}_{\alpha}(X)+\operatorname{VaR}_{\alpha}(Y)$, for any $\alpha \in(0,1)$.
5. Comment.

Exercise 3: On spherical distributions (Exam 2019)

Fix $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, $d \in \mathbb{N}$. We will denote by \top the transpose operation and by $\|t\|=\sqrt{t^{\top} t}=\sqrt{t_{1}^{2}+t_{2}^{2}+\ldots+t_{d}^{2}}$ the euclidean norm of a vector $t=\left(t_{1}, \ldots, t_{d}\right)^{\top} \in \mathbb{R}^{d}$. For a d-dimensional vector-valued random variable $X=\left(X_{1}, \ldots, X_{d}\right)^{\top}$ we denote by ϕ_{X} its characteristic function, that is

$$
\phi_{X}(t)=\mathbb{E}\left[\exp \left(i t^{\top} X\right)\right], \quad t \in \mathbb{R}^{d}
$$

We say that the d-dimensional vector $X=\left(X_{1}, \ldots, X_{d}\right)^{\top}$ has a spherical distribution if there exists a function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ such that its characteristic function satisfies

$$
\phi_{X}(t)=\psi\left(t^{\top} t\right)=\psi\left(t_{1}^{2}+t_{2}^{2}+\ldots+t_{d}^{2}\right) .
$$

We will write $X \sim \mathcal{S}_{d}(\psi)$ to denote that X has a spherical distribution with characteristic function $\psi\left(t^{\top} t\right)$. Throughout this exercise we fix $X \sim \mathcal{S}_{d}(\psi)$ for some function ψ and we define the \mathbb{R}^{d}-valued random variable

$$
\begin{equation*}
Y=\mu+C X \tag{5}
\end{equation*}
$$

where $\mu \in \mathbb{R}^{d}$ and $C \in \mathbb{R}^{d \times d}$.

1. Let $Z \sim \mathcal{N}\left(0, I_{d}\right)$, where I_{d} is the identity matrix. Show that $Z \sim S_{d}\left(\psi_{0}\right)$ for a function ψ_{0} to be determined.
2. Fix $a \in \mathbb{R}^{d}$. Show that

$$
a^{\top} X \stackrel{d}{=}\|a\| X_{1}
$$

where $\stackrel{d}{=}$ stands for the equality in distribution and we recall that X_{1} is the first component of the vector X.
3. Deduce that

$$
a^{\top} Y \stackrel{d}{=} a^{\top} \mu+\left\|C^{\top} a\right\| X_{1}
$$

for all $a \in \mathbb{R}^{d}$.
Part 1. Value-at-Risk. Fix $\alpha \in(0,1)$ and set $d=2$.
4. Justify that $\operatorname{VaR}_{\alpha}(U)=\operatorname{VaR}_{\alpha}(V)$, for any two random variables U and V such that $U \stackrel{d}{=} V$.
5. Deduce that

$$
\operatorname{VaR}_{\alpha}\left(a^{\top} Y\right)=a^{\top} \mu+\left\|C^{\top} a\right\| \operatorname{VaR}_{\alpha}\left(X_{1}\right)
$$ for all $a \in \mathbb{R}^{d}$.

6. Using the above, show that $\operatorname{VaR}_{\alpha}\left(Y_{1}+Y_{2}\right) \leq \operatorname{VaR}_{\alpha}\left(Y_{1}\right)+\operatorname{VaR}_{\alpha}\left(Y_{2}\right)$.
7. What is the financial interpretation of the previous inequality? Does it hold for more general distributions Y ?
Part 2. Optimization problem. More generally, let $d \geq 2$ and and consider d-risky assets $\left(S^{1}, \ldots, S^{d}\right)$ such that their risky excess returns are assumed to follow the distribution Y as in (5). We seek to find the optimal vector of weights $w=\left(w_{1}, \ldots, w_{d}\right)^{\top}$ invested in the stocks $\left(S^{1}, \ldots, S^{d}\right)$ mimimzing the Value-at-Risk of the portfolio:

$$
\begin{array}{ll}
\min _{w \in \mathbb{R}^{d}} & \frac{1}{2} \operatorname{VaR}_{\alpha}\left(w^{\top} Y\right) \tag{6}\\
\text { subject to } & e^{\top} w=1 \quad \mu^{\top} w=r
\end{array}
$$

for a fixed level of returns $r>0$, and $e=(1, \ldots, 1)^{\top}$ the vector of ones in \mathbb{R}^{d}.
8. Show that the minimization problem (6) is equivalent to

$$
\begin{array}{ll}
\min _{w \in \mathbb{R}^{d}} & \frac{1}{2} w^{\top} \Sigma w \\
\text { subject to } & e^{\top} w=1
\end{array}
$$

where Σ is a $d \times d$-matrix to be determined.
9. What problem do you recognize? Find the optimal vector of weights w^{*}.
10. Can we replace $\operatorname{VaR}_{\alpha}$ in (6) by more general risk measures ρ ? What properties should ρ satisfy to obtain the same conclusions? Does it work for the expected shortfall?

Exercise 4: Value-at-Risk (Exam 2019)

Let X denote a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which corresponds to the losses of a portfolio. Recall that the Value-at-Risk $\operatorname{VaR}_{\alpha}(X)$ of the portfolio X for the threshold α is defined by

$$
\operatorname{VaR}_{\alpha}(X)=F_{X}^{-}(\alpha)
$$

where F_{X}^{-}is given by

$$
F_{X}^{-}(y)=\inf \left\{x \in \mathbb{R}: F_{X}(x) \geq y\right\}, \quad y \in(0,1)
$$

and F_{X} is the cumulative distribution function of X.

1. Show that F^{-}is non-decreasing and deduce that for all $\alpha_{1} \leq \alpha_{2}, \operatorname{VaR}_{\alpha_{1}}(X) \leq \operatorname{VaR}_{\alpha_{2}}(X)$.
2. Show how this result can be deduced from a graph on the Value-at-Risk, under a suitable assumption to be specified.

From now on, we assume that $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ for some $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}$. Fix a threshold $\alpha \in(0,1), n \in \mathbb{N}$ and let X_{1}, \ldots, X_{n} denote n independent observations of X, i.e. $X_{i} \sim$ $\mathcal{N}\left(\mu, \sigma^{2}\right), i=1 \ldots, n$. We denote by $L_{n}\left(\mu, \sigma^{2}\right)$ the likelihood function of $\left(X_{1}, \ldots, X_{n}\right)$ and we set $l_{n}\left(\mu, \sigma^{2}\right):=\log L_{n}\left(\mu, \sigma^{2}\right)$.
3. Show that

$$
\operatorname{VaR}_{\alpha}(X)=\mu+\sigma z_{\alpha}
$$

where $z_{\alpha}=F_{\mathcal{N}(0,1)}^{-}(\alpha)$ is the α-quantile of a standard Gaussian $\mathcal{N}(0,1)$.
4. Show that

$$
l_{n}\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log 2 \pi-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} .
$$

5. Derive the maximum likelihood estimators $\left(\hat{\mu}, \hat{\sigma}^{2}\right)$ for $\left(\mu, \sigma^{2}\right)$ and deduce an estimator for $\operatorname{VaR}_{\alpha}(X)$.
6. What are the advantages and disadvantages of this method? Explain alternative methods correcting these issues.

Exercise 5: Wang risk measures (Exam 2019)

Let X be a non-negative random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by \mathcal{G} the following set of functions
$\mathcal{G}=\{g:[0,1] \rightarrow[0,1]$ non-decreasing and right-continuous such that $g(0)=0$ and $g(1)=1\}$.
For any $g \in \mathcal{G}$, we define ρ_{g} by

$$
\rho_{g}(X)=\int_{0}^{\infty} g\left(1-F_{X}(x)\right) d x
$$

where F_{X} is the cumulative distribution function of X.

1. Justify that ρ_{g} can be considered as a risk measure.
2. Verify that id : $y \mapsto y$ belongs to \mathcal{G} and show that $\rho_{\mathrm{id}}(X)=\mathbb{E}[X]$.
3. Fix $\alpha \in(0,1)$. Verify that $g_{\alpha}: y \mapsto \mathbf{1}_{\{y \geq 1-\alpha\}}$ belongs to \mathcal{G} and compute $\rho_{g_{\alpha}}(X)$.
4. We recall that for any non-decreasing and right-continuous function we can define its Stieltjes measure $d g$ given by $d g((s, t])=g(t)-g(s)$ so that we have $g(t)=g(s)+\int_{s}^{t} d g(u)$, for all $s \leq t$. Show that, for all $g \in \mathcal{G}$,

$$
\rho_{g}(X)=\int_{0}^{1} \operatorname{VaR}_{1-\alpha}(X) d g(\alpha)
$$

5. Fix $g \in \mathcal{G}$. Show that ρ_{g} is invariant by translation, positive homogeneous and monotone.
6. Is ρ_{g} sub-additive for all $g \in \mathcal{G}$? Justify.
7. Let $g \in \mathcal{G}$ twice differentiable with continuous first and second derivatives. Assume that F_{X} is continuous.
(a) Recall the definition of the expected shorftall $\mathrm{ES}_{\alpha}(X)$ and show that

$$
\mathrm{ES}_{\alpha}(X)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{VaR}_{p}(X) d p, \quad \alpha \in(0,1)
$$

(b) Show that

$$
\rho_{g}(X)=-\int_{0}^{1} \mathrm{ES}_{1-\xi}(X) \xi g^{\prime \prime}(\xi) d \xi+g^{\prime}(1) \mathbb{E}[X] .
$$

(c) Deduce that ρ_{g} is sub-additive if g is concave.
(d) What can be said on ρ_{g} when g is concave?

[^0]: *noufel.frikha@univ-paris1.fr

