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Redundant assets and useless portfolios

Definition
Let a financial structure represented by its payoff matrix V .
Given a spot price p, an asset j is redundant if the payoff vector
Vj(p) is a linear combination of the payoff vectors of the other
assets (Vk (p))k∈J ,k 6=j .

A portfolio z ∈ RJ is useless if the payoff in each state is equal
to 0, that is V (p)z = 0.
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Value of a useless portfolios

If q is a no-arbitrage asset price for the spot price vector p, then
there exists λ ∈ RD1

++ such that q = V (p)tλ. So, if portfolio
z ∈ RJ is useless, then
q · z = V (p)tλ · z = λ · V (p)z = λ · 0 = 0. So the value of a
useless portfolio is equal to 0 for all no-arbitrage asset price q.

In other words, the kernel of the payoff matrix V (p) and the one
of the full payoff matrix W (p,q) coincide for all no-arbitrage
asset price q.
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Characterisation of an asset structure without
redundant asset

Proposition
Let a financial structure represented by its payoff matrix V and
p be a spot price. Then there is no redundant asset if and only
if one of the two following condition is satisfied :

a) V (p) is one-to-one or equivalently the rank of
V (p) is equal to ]J ;
b) the unique useless portfolio is 0.
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Uniqueness of the supporting portfolio for an optimal
consumption

Proposition
Let a financial structure represented by its payoff matrix V and
(p,q) be a spot - asset price pair such that V is arbitrage free
at (p,q).Let x̄i be optimal for ui in the budget set BFi (p,q). Let
zi and z ′i to portfolios, which finance x̄i . Then, if Assumption
NSS holds, zi − z ′i is a useless portfolio.

Consequently, if there is no redundant asset for V (p), then x̄i is
affordable for a unique portfolio in RJ .
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On the asset market clearing condition for a financial
structure without redundant asset

Proposition

Let EF = ((Xi ,ui ,ei ,Zi)i∈I ,V ) be an unconstrained (Zi = RJ for
all i ∈ I) financial economy satisfying Assumption NSS and
with no redundant asset. Let ((x∗i ),p∗,q∗) ∈ (RL)I × RL × RJ
such that
(a) [Preference maximization] for every i ∈ I,
x∗i is a “maximal” element of ui in the budget set BFi (p∗,q∗) in
the sense that there exists z̃i ∈ RJ such that{

p∗(ξ0) · x∗i (ξ0) + q∗ · z̃i ≤ p∗(ξ0) · ei(ξ0)
p∗(ξ) · x∗i (ξ) ≤ p∗(ξ) · ei(ξ) + V (p∗, ξ) · z̃i , ∀ξ ∈ D1

and BFi (p∗,q∗) ∩ {x ′i ∈ Xi | ui(x ′i ) > ui(x∗i )} = ∅;
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Proposition continued

(b) [Market clearing condition on the spot markets]∑
i∈I

x∗i =
∑
i∈I

ei .

Then,
∑

i∈I z̃i = 0 and ((x∗i , z̃i),p∗,q∗) is a financial equilibrium
of EF .
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How to discard redundant assets at no cost

Let V be a financial structure and p be a spot price vector. We
know that (Vj(p))j∈J is a spanning family of the range of V (p)

and we can find a maximal sub-family J̃ ⊂ J such that
(Vj(p))j∈J̃ is still spanning the range of V (p) and is linearly
independent.

It means that for j ∈ J \ J̃ , the asset j is redundant in the
sense that Vj(p) =

∑
k∈J̃ µ

j
kVk (p) for some µj ∈ RJ̃ .

Ṽ is the substructure obtained by keeping only the assets in J̃ .
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An equivalent substructure Ṽ without redundant asset

Proposition

Let EF = ((Xi ,ui ,ei ,RJ )i∈I ,V ) be an unconstrained financial
economy satisfying Assumption NSS. Then there exists a
substructure Ṽ composed by a subset J̃ of the assets of V
such that

a) Ṽ has no redundant asset ;
b) If ((x∗i , z

∗
i ),p∗,q∗) ∈ (RL × RJ )I × RL × RJ is a

financial equilibrium for the structure V , then there
exists (ζ∗i ) ∈ (RJ̃ )I such that ((x∗i , ζ

∗
i ),p∗, q̃∗) is a

financial equilibrium for the structure Ṽ , where the
price q̃∗ is the standard projection of q∗ on RJ̃ .
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Proposition continued

c) If ((x∗i , z̃
∗
i ),p∗, q̃∗) ∈ (RL × RJ )I × RL × RJ is a

financial equilibrium for the structure Ṽ , then there
exists (z∗i ) ∈ (RJ̃ )I such that ((x∗i , z

∗
i ),p∗, q̃∗) is a

financial equilibrium for the structure V , where the
price q∗ is computed for the asset j ∈ J \ {J̃ }
according to the present value vector associated
to q̃∗ and z∗i is the natural embedding of z̃∗i in RJ
by adding 0 for the additional components.

,
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A remark on the price of a redundant asset

Remark
Let V be a financial structure and p be a spot price vector. Let
j0 ∈ J be a redundant asset. Then there exists µ ∈ RJ\{j0}
such that Vj0(p) =

∑
j∈J ,j 6=j0 µjVj(p). Now, let q be a

no-arbitrage asset price. Then, there exists there exists
λ ∈ RD1

++ such that q = V (p)tλ. Hence,

qj0 = Vj(p)tλ =
∑

j∈J ,j 6=j0

µjVj(p)tλ =
∑

j∈J ,j 6=j0

µjqj

So, the price of the asset j0 is a linear combination of the prices
of the other assets with the coefficient given by the fact that the
payoff vector of asset j0 is a linear combination of the payoff
vectors of the other assets.
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Pricing of a new asset

One commodity per state with spot prices normalised to 1 at
each state and Assumptions S and NSS;
V and q be an arbitrage free asset price ;
A new asset k represented by a payoff vector Vk is traded ;
The asset price remains unchanged, so Vk does not enlarge
the budget sets of the agents so

Vk is a linear combination of the payoff vectors of the other
assets.
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Proof

(xi(ξ)− ei(ξ))ξ∈D ≤W (q)z

with the initial structure and

(xi(ξ)− ei(ξ))ξ∈D ≤W (q)z + ζ

(
−qk
Vk

)
with the additional asset.
So, under the survival assumption, the second budget set is
strictly larger except if (−qk ,Vk ) is in the range of W (q).

So, there exists µ ∈ RJ such that Vk =
∑

j∈J µjVj(p) and
qk =

∑
j∈J µjqj .
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Computation of the arbitrage price from the present
value vector

If we know the present value vector λ associated to the asset
price q.

qk =
∑
ξ∈D1

λξVk (ξ)

Remark
Note that even if we have several present value vectors
associated to the asset price q, the pricing by arbitrage of the
new asset is well defined.
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Definition of the over hedging pricing

Definition
Let V be a financial structure, p be a spot price and q an
arbitrage free asset price associated to the present value vector
λ and k an asset represented by its payoff vector v ∈ RD1 .
Then, the over hedging price of k is the value of the following
minimisation problem.

Minimise
∑

J∈J qjzj
V (p)z ≥ v
z ∈ RJ
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A necessary and sufficient condition for the finiteness
of the over hedging price

We remark that the value of the previous problem may be +∞ if
there is no portfolio z such that V (p)z ≥ c.

Nevertheless, if the bond is among the existing portfolio, or,
more generally, if there exists a portfolio z such that V (p)z � 0,
we are sure that the value is finite for every v ∈ RD1 .

Actually, this is also a necessary condition.
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Properties of the over hedging price

Proposition

Let V be a financial structure and (p,q) be a spot - asset price
vector such that V is arbitrage free at (p,q). Let us assume that
there exists a portfolio z such that V (p)z � 0. Then the over
hedging price function q+ satisfies the following properties :

a) q+ is a positively homogeneous convex function
on RD1 , so it is Lipschitz continuous.
b) If λ is a present value vector associated to q,
then q+(v) ≥ λ · v.
c) the restriction of q+ to the range of V (p) is the
linear mapping λ · v.
d) q+(v) = max{λ · v | λ ∈ RD1

+ ,V (p)tλ = q}.
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Optimality with short sale constraints

The portfolio sets are no more RJ but {z i}+ RJ+ , with z i ≤ 0.

Proposition
Let us assume that Assumption NSS is satisfied by the financial
economy EF = ((Xi ,ui ,ei ,Zi = {z i}+ RJ+)i∈I ,V ). For a
commodity-asset price pair (p,q), if there exists a consumer i
and xi ∈ Xi , which is optimal in the budget set BFi (p,q), then it
does not exists ζ ∈ RJ+ such that W (p,q)ζ ∈ RD

+ \ {0}.
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No arbitrage with short sale constraints

Proposition
The financial structure V with the portfolio sets
(Zi = {z i}+ RJ+)i∈I is arbitrage free at (p,q) if and only if there
exists λ ∈ RD1

++ such that q ≥
∑

ξ∈D1
λξV (p, ξ) = V (p)tλ.
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