Définition : Une matrice A de taille $n \times p$ est un tableau de scalaires à n lignes et p colonnes :

Le **coefficient** sur la i-ème ligne et j-ème colonne est noté a_{ij} . On note $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$

On note $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices de taille $n \times p$. Si n = p, A est **carrée**. On note $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$.

Opérations sur les matrices : On peut sommer deux matrices de même taille :

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K}), B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$$
$$A + B = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$$

On peut multiplier une matrice par un scalaire :

$$\lambda \in \mathbb{K}, A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K}),$$
$$\lambda A = (\lambda a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$$

→ Ces opérations sont effectuées coefficient par coefficient.

Matrice nulle : On note $0_{n,p}$ la matrice de taille $n \times p$ dont tous les coefficients sont nuls.

Produits de matrices: On peut multiplier une matrice de taille $n \times p$ par une matrice de taille $p \times q$:

$$A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K}), B = (b_{ij}) \in \mathcal{M}_{p,q}(\mathbb{K})$$

 $AB = (c_{ij}) \in \mathcal{M}_{n,q}(\mathbb{K}) \text{ avec } c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$

 \rightsquigarrow On obtient une matrice de taille $n \times q$.

Propriétés

- $0_{qn} \cdot A = 0_{qp}, A \cdot 0_{pq} = 0_{nq}$.
- Associativité : (AB)C = A(BC).
- Distributivité:

$$A(B+C) = AB + AC, (B+C)A = BA + CA$$

 \triangle Généralement $AB \neq BA$.

 $AB = AC \Rightarrow B = C.$

A $AB = 0_{n,q} \Rightarrow A = 0_{n,p} \text{ ou } B = 0_{p,q}.$

Puissance d'une matrice carrée : Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit A^p par récurrence :

$$A^0 = I_n, \ A^{k+1} = AA^k$$

Une matrice A est **nilpotente** s'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0_{n,n}.$

Matrice identité: On appelle matrice identité de taille n, notée I_n , la matrice carrée

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$$

On a, pour tout $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $I_n A = A$ et $AI_p = A$

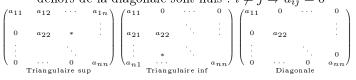
Inverse: On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est inversible s'il existe une matrice $A^{-1} \in \mathcal{M}_n(\mathbb{K})$ telle que $AA^{-1} = A^{-1}A = I_n$. A^{-1} est l'**inverse** de A.

Propriétés:

- $\bullet \ (A^{-1})^{-1} = A.$
- $\bullet (AB)^{-1} = B^{-1}A^{-1}$.
- $(A^p)^{-1} = (A^{-1})^p$

Matrices particulières:

- On dit que A est triangulaire supérieure si tous les éléments au-dessous de la diagonale sont nuls : i > $j \Rightarrow a_{ij} = 0$
- ullet On dit que A est triangulaire inférieure si tous les éléments au-dessus de la diagonale sont nuls : i < $j \Rightarrow a_{ij} = 0$
- On dit que A est diagonale si tous les éléments en dehors de la diagonale sont nuls : $i \neq j \Rightarrow a_{ij} = 0$



Transposée : La transposée de $A \in \mathcal{M}_{n,p}(\mathbb{K})$, notée ${}^{t}A \in \mathcal{M}_{p,n}(\mathbb{K})$, est définie par $({}^{t}A)_{ij} = a_{ji}$. \rightarrow les lignes de tA sont les colonnes de A et vice-versa.

Propriétés:

- ${}^{t}(A+B) = {}^{t}A + {}^{t}B, \; {}^{t}(\lambda A) = \lambda^{t}A$
- t(tA) = A, $t(AB) = tB^{t}A$, $(tA)^{-1} = t(A^{-1})$.

Définition:

- $A \in \mathcal{M}_n(\mathbb{K})$ est **symétrique** si ${}^tA = A$.
- $A \in \mathcal{M}_n(\mathbb{K})$ est antisymétrique si ${}^tA = -A$

Trace: La trace de $A \in \mathcal{M}_n(\mathbb{K})$ est la somme des coefficients diagonaux de A

$$\operatorname{Tr}(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

Propriétés:

- $\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B), \operatorname{Tr}(\lambda A) = \lambda \operatorname{Tr}(A)$
- $\operatorname{Tr}(^t A) = \operatorname{Tr}(A)$.
- $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.