Université Paris 1 Panthéon-Sorbonne L3 MIASHS 2022-2023 Compléments de calcul intégral et différentiel

CC2 Durée : 1h30.

Exercice 1 Soit (X, \mathcal{T}, μ) un espace mesuré.

- 1. Donner la définition de l'espace $\mathcal{L}^p(\mu)$.
- 2. Enoncer l'inégalité de Hölder.

Exercice 2 On considère le système d'équations

$$(\star) \begin{cases} x^2y + 3y + z^3 - z &= 8\\ 2x + 2y + \cos(xz) &= 7 \end{cases}$$

- 1. Montrer qu'il existe un intervalle ouvert $J \subset \mathbb{R}$ contenant 2 et deux fonctions \mathcal{C}^1 $\psi_1, \psi_2 : J \to \mathbb{R}$ telles que, pour tout $t \in J$, $(\psi_1(t), t, \psi_2(t))$ est solution de (\star) et $\psi_1(2) = 1$.
- 2. Déterminer $\psi_2(2)$, ainsi que $\psi_1'(2)$ et $\psi_2'(2)$.

Exercice 3 Déterminer les extrema de la fonction $f:(x,y,z)\in\mathbb{R}^3\mapsto x^2+3y$ sur l'ensemble

$$\Gamma = \{(x, y, z) \in \mathbb{R}^3, 4x - 3y = 1, x^2 + z^2 = 5\}$$

Exercice 4 Dans \mathbb{R}^3 muni de la norme euclidienne

$$||u|| = \sqrt{x^2 + y^2 + z^2}$$

on considère l'ensemble

$$\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 1\}, u_0 = (2, 1, 1)$$

- 1. Montrer que $K = \overline{B}(u_0, 34) \cap \mathcal{P}$ est un compact non vide.
- 2. Montrer que la fonction $f(x, y, z) = (x 2)^2 + (y 1)^2 + (z 1)^2$ admet un minimum sur K en un point u_{min} de \mathcal{P} .
- 3. Déterminer le point de \mathcal{P} le plus proche de u_0 .