Université Paris 1 Panthéon-Sorbonne L3 MIASHS 2021-2022 Compléments de calcul intégral et différentiel

Exercice 1 On considère le sous-ensemble de \mathbb{R}^3 défini par

$$\mathcal{C} = \{(x, y, z) \in \mathbb{R}^3, x^2 + 3y^2 = 4, z = 2\}$$

- 1. Justifier que la fonction $f:(x,y,z)\in\mathbb{R}^3\mapsto x^2+y^2+z^2$ admet des extrema sur $\mathcal{C}.$
- 2. Déterminer le point de $\mathcal C$ le plus proche de l'origine.

Exercice 2 On rappelle que la mesure de Dirac en $a \in \mathbb{R}$ est définie par

$$\delta_a: A \in \mathcal{P}(\mathbb{R}) \mapsto \begin{cases} 1 \text{ si } a \in A \\ 0 \text{ sinon.} \end{cases}$$

Soit $f:\mathbb{R} \to \mathbb{R}$ une fonction borélienne positive. Montrer que

$$(\star) \quad \int_{\mathbb{R}}^* f \, d\delta_a = f(a).$$