
Building a 2D Vector Class in Python

This tutorial is designed to guide you through the process of building a comprehensive 2D Vector
class in Python, focusing on the implementation of various dunder (double underscore) methods and
properties. This exercise will help reinforce your understanding of Python’s object-oriented program-
ming features.

In class we have built the following class Vector:

1 class Vector:

2 ’’’This is the class Vector to manipulate vectors in 2d’’’

3
4 @staticmethod

5 def from_polar(rho ,theta):

6 return Vector(rho * math.cos(theta), rho * math.sin(theta))

7
8 def __init__(self , x, y):

9
10 if not (isinstance(x,(int ,float)) and isinstance(y,(int ,float))):

11 raise TypeError(’No way , I want numbers ’)

12
13 # set the coordinates

14
15 self.x = x

16 self.y = y

17
18 def __repr__(self):

19 return f’Vector ({self.x},{self.y})’

20
21 def __str__(self):

22 return f’This is Vector ({self.x},{self.y})’

23
24 def __add__(self , other_vector):

25 if not isinstance(other_vector , Vector):

26 raise TypeError(’Please add a vector to a vector ’)

27 return Vector(self.x + other_vector.x, self.y + other_vector.y)

28
29 def __eq__(self , other_vector):

30 if not isinstance(other_vector , Vector):

31 raise TypeError(’Please add a vector to a vector ’)

32 return (self.x == other_vector.x) and (self.y == other_vector.y)

33
34 @property

35 def norm(self):

36 return math.sqrt(self.x**2 + self.y**2)

37
38 def normalized(self , inplace = False):

39 ’’’This method normalizes the vector. By convention , (0 ,0) is nomalized to (0 ,0)

’’’

40 norm_of_the_vector = self.norm

41
42 if inplace:

43 if norm_of_the_vector == 0.:

44 self.x = 0.

45 self.y = 0.

46 else:

47 self.x /= norm_of_the_vector

48 self.y /= norm_of_the_vector

49 return None

50 else:

51 return Vector(self.x/norm_of_the_vector , self.y/norm_of_the_vector) if

norm_of_the_vector != 0. else Vector (0. ,0.)

1

1. Recall what is a static method? a property? a dunder method?

2. Implement two properties rho and theta for the polar coordinates.

3. Implement the sub method for vector subtraction.

4. Implement the neg method for vector negation.

5. Implement the mul method for scalar multiplication. Also, implement rmul to handle mul-
tiplication when the Vector instance is on the right side of the * operator.

6. Implement the bool method to return False if the vector is the zero vector.

7. Write a method to compute the inner product with another vector.

8. Write a method to rotate the vector by an angle θ. It should have a keyword parameter inplace.

9. Write a method to plot the vector using matplotlib.

10. Improve the previous method so that it takes an Axes object. The goal is to be able to add a
vector on a given graph or to plot several vectors on the same graph.

Congratulations on completing the tutorial! You have now built a fully functional 2D Vector class
that supports a variety of operations, deepening your understanding of Python’s special methods and
soem of the object-oriented programming principles.

2

