Building a 2D Vector Class in Python

This tutorial is designed to guide you through the process of building a comprehensive 2D Vector
class in Python, focusing on the implementation of various dunder (double underscore) methods and
properties. This exercise will help reinforce your understanding of Python’s object-oriented program-

1 class Vector:

2 ’??’This s the class Vector to manipulate wvectors in 24’’’

3

4 @staticmethod

5 def from_polar (rho,theta):

6 return Vector (rho * math.cos(theta), rho * math.sin(theta))

7

8 def __init__(self, x, y):

9

10 if not (isinstance(x,(int,float)) and isinstance(y, (int,float))):

11 raise TypeError(’No way, I want numbers’)

12

13 # set the coordinates

14

15 self.x = x

16 self.y =y

17

18 def __repr__(self):

19 return f’Vector ({self.x},{self.y})’

20

21 def __str__(self):

22 return f’This is Vector ({self.x},{self.y})’

23

24 def __add__(self, other_vector):

25 if not isinstance(other_vector, Vector):

26 raise TypeError (’Please add a vector to vector’)

27 return Vector(self.x + other_vector.x, self. + other_vector.y)

28

29 def __eq__(self, other_vector):

30 if not isinstance(other_vector, Vector):

31 raise TypeError(’Please add a vector to vector’)

32 return (self.x == other_vector.x) and (self.y == other_vector.y)

33

34 @property

35 def norm(self):

36 return math.sqrt(self.x**2 + self.y*x2)

37

38 def normalized(self, inplace = False):

39 >?’This method normalizes the wector. By convention, (0,0) is nomalized to
220

40 norm_of_the_vector = self.norm

41

42 if inplace:

43 if norm_of_the_vector == 0.

44 self.x = 0.

45 self.y = 0.

46 else:

47 self.x /= norm_of_the_vector

48 self.y /= norm_of_the_vector

49 return None

50 else:

51 return Vector(self.x/norm_of_the_vector, self.y/norm_of_the_vector) if

ming features.

In class we have built the following class Vector:

norm_of_the_vector != 0. else Vector (0.,0.)

1. Recall what is a static method? a property? a dunder method?

2. Implement two properties rho and theta for the polar coordinates.

3. Implement the __sub__ method for vector subtraction.

4. Implement the _neg__ method for vector negation.

5. Implement the _mul__ method for scalar multiplication. Also, implement __rmul__ to handle mul-
tiplication when the Vector instance is on the right side of the * operator.

6. Implement the __bool__ method to return False if the vector is the zero vector.

7. Write a method to compute the inner product with another vector.

8. Write a method to rotate the vector by an angle 6. It should have a keyword parameter inplace.

9. Write a method to plot the vector using matplotlib.

10. Improve the previous method so that it takes an Axes object. The goal is to be able to add a
vector on a given graph or to plot several vectors on the same graph.

Congratulations on completing the tutoriall You have now built a fully functional 2D Vector class
that supports a variety of operations, deepening your understanding of Python’s special methods and
soem of the object-oriented programming principles.

