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Abstract Basic principles underlying rational portfolio choice
+ equilibrium conditions in the capital markets to which the previous analysis leads.

Chapter I Portfolio analysis

Aim = to find the most desirable combination of assets (portfolio) to hold.

Markowitz 1959: Portfolio selection - Efficient diversification of investments
then Sharpe.

1 Mean variance approach for investors’ preferences

We consider a financial market on one period.
There are no transactions costs and no taxes. Assets are divisible: one can hold α assets, with
α ∈ IR (α < 0 means short selling, see below).

General assumption for the investors’ behaviour:

- investors structure their portfolios in order to maximize the expected utility of their final
wealth E[U(W )], with U(·) utility function of the investor, defined on his final wealth W .

- their utility increases with wealth and they are risk averse:
U strictly increasing and concave (U ′ > 0, U ′′ < 0).

In the general case, a Taylor expansion around EI (W ) (or everywhere for an analytical function)
implies U(W ) = U(EI (W ))

+U ′(EI (W ))(W − EI (W )) +
1
2
U ′′(EI (W ))(W − EI (W ))2 +

+∞∑
n=3

1
n!

U (n)(EI (W ))(W − EI (W ))n.

Taking the expectation, we get:

EI [U(W )] = U(EI (W ))+
1
2
U”(EI (W ))EI [(W −EI (W ))2] +

+∞∑
n=3

1
n!

U (n)(EI (W ))EI [(W −EI (W ))n].

Then for U strictly increasing and concave, the investor has a preference for expected value and
aversion for variance. But the next moments are involved as well.
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The mean variance approach relies on the assumption that investors select assets according to the
expectation and variance of their final wealth or, more often, according to the expectation and
variance of the (rate of) return on their wealth or investment (W = W0(1 + R), function of W ⇔ function

of R). It is then restrictive.

Reminder about the first moments of a distribution

To assess an investment having a return R, we look at the following moments:

? 1st moment: expectation EI (R) = measure of the average return.
For R discrete with {ri}i its possible values, EI (R) =

∑
i piri.

? 2nd (central) moment: variance V (R) = EI ([R− EI (R)]2) (=
∑

i pi[ri − EI (R)]2 for R discrete).

It is a measure of the dispersion.

The standard deviation σ(R) =
√

V (R) can also be used (”volatility’” of the asset). Both are risk
measures.

Note that V (R) is a satisfying measure of risk only when the probability distribution of the returns
are symmetric: then it is fine to take into account gains in the risk measure.
Otherwise other measures can be used: semi-variance, Value-at-Risk...

? 3rd (standardized) moment: skewness EI [(R−EI (R)
σ(R) )3].

Skewness is a measure of symmetry, or more precisely, the lack of symmetry.
A distribution is symmetric if both the left and right sides are the same relative to the center point
(R− EI (R) and −(R− EI (R)) have the same law).

Skewness = 0 for a symmetric distribution (indeed the density of the centered variable, f , is then an

even function, so for any n ∈ IN, x 7→ x2n+1f(x) is an odd function and
∫

x2n+1f(x)dx = 0), in particular
for a Gaussian variable.

A skewness > 0 means a distribution skewed to the right,
i.e. the right tail is long relative to the left tail.
In finance, positively skewed returns will be preferred.

? 4th (standardized) moment: kurtosis EI [(R−EI (R)
σ(R) )4].

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.
It is worth 3 for R Gaussian. Then the excess kurtosis, Kurtosis−3, is computed.

Distributions with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly,
and have heavy tails. Distributions with low kurtosis tend to have a flat top near the mean rather
than a sharp peak. A uniform distribution would be the extreme case.
In finance, returns with lower kurtosis will be preferred.

Mean-variance preferences assumption means that investors’ preferences can be described
by a function that depends only on the expected return and return variance (as soon as these quan-
tities are finite). In particular, investors do not care about skewness and kurtosis.
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Precisely, it is assumed that for any investor, we have, with U his utility function and W0 his
initial wealth:

(A)
EI (U(W )) = EI (U(W0(1+R))) = f(EI (R), V (R)) for a given function f (depending on the
investor) satisfying: for (x, y) ∈ IR× IR+, ∂f

∂x (x, y) > 0 and ∂f
∂y (x, y) < 0.

This assumption is satisfied in the two following cases:

First justification: investors have Quadratic utility functions: U(W ) = aW − bW 2, with a, b > 0.
Note that such a function can be used only for values of wealth satisfying W < a

2b a.s., for the utility
function to be an increasing function of the wealth.

Exercise 1. Prove that a Quadratic Utility Function satisfies (A).

Quadratic utility is considered implausible because:

- assets’ returns have to be bounded.

- it assumes that investors are equally averse to deviations above the mean as they are to deviations
below the mean (but this is implied by assumption (A), so not considered as a drawback in our
framework).

- quadratic utility implies an absolute risk aversion (ARA) increasing with wealth.

⇒ second approach is generally preferred.

Second justification: the assets’ returns are assumed to constitute a Gaussian vector (then any
linear combination of these returns is Gaussian).
(Also, note that W Gaussian ⇔R Gaussian).

Indeed
1. a Gaussian distribution is fully characterized by mean / variance (any moment with order of at
least 3 can be written in terms of the first 2 moments).
2. the assumption implies that the portfolios returns are Gaussian. Then EI (U(W )) is a function
only of the first 2 moments.

3. Then, for any utility function U positively monotone and concave, the investor has preference
for expected return and aversion for variance (or for standard deviation, which is equivalent).
See Exercise 2.

Limits of this approach: huge limit: distributions are not Gaussian!

Conventional assumption: stock markets behave according to a random Gaussian or ”normal” dis-
tribution. See for example Fama, Eugene F. (1965), ”Random Walks In Stock Market Prices”.
Financial Analysts Journal.
But due to its rigid shape, the Gaussian distribution lacks the flexibility to capture crucial features
that are presented in financial return data. It not only underestimates the probability of large move-
ments but also that of very small movements; and it overestimates the frequency of intermediate
movements.
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But clearly, the concern is with the larger losses. Large movements in prices (i.e. crashes) are
much more common than what would be predicted with a normal distribution.
Looking at the Dow Jones index roughly over the last 80 years, we observe on average a daily loss
of more than 3% approximately every four months. Under Gaussian assumption, one expects such
losses only about once every 13 months. A drop of 6% or more happened about every three years
on average and not every 175,000 years as the Gaussian assumption implies. Losses of more than
9% occurred about once every 17 years, not once in a period that is about 25,000 times longer than
the age of our universe.

(also: the Gaussian model would predict that a crash like the one that occurred in 1987 would
occur only once every 1087 years. Empirical observations, however, give evidence to show that such
crashes can possibly occur once every 38 years).

2 Mean variance portfolio theory

Under the previous assumption, determine the portfolios that will be preferred to others.

2.1 Risk of a portfolio

W0 initial wealth (assumed positive).
Ri = return of asset i, for 1 ≤ i ≤ N .
xi = fraction of the portfolio (i.e. proportion of wealth) invested in asset i (no assumption on the
sign of xi).
We require the investor to be fully invested then

∑
i xi = 1.

The amount xiW0 is invested in asset i, the gain/loss is: xiW0Ri.
Total for the portfolio =

∑
i xiW0Ri, corresponds to the (rate of) return RX =

∑
i xiRi, ie:

Return on a portfolio of assets = weighted average of return on the individual assets.

Expected return on the portfolio: EI (RX) =
∑

i xiEI (Ri)

Exercise 4.1 Do we get an equivalent relationship if xi is the number of asset i in the portfo-
lio?

Variance of the portfolio return:

• 2 assets
V (RX) = V (x1R1 + x2R2) = EI ([x1R1 + x2R2 − EI (x1R1 + x2R2)]2)

= E
(
{x1[R1 − EI (R1)] + x2[R2 − EI (R2)]}2

)
V (Ri) = σ2

i , with σi standard deviation of Ri,
EI ([R1 − EI (R1)][R2 − EI (R2)]) = Cov(R1, R2) denoted by σ12.

Then V (RX) = x2
1σ

2
1 + 2x1x2σ12 + x2

2σ
2
2.

The covariance is a measure of how returns on assets move together.
σ12 > 0 when good (or bad) outcomes for each asset occur together.

• N assets (note that the results of this part do not require
∑

i xi = 1)
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V (RX) =
∑

i x
2
i σ

2
i +

∑
i6=j

xixjσij with σij = Cov(Ri, Rj).

Also V (R) =
N∑

i=1

N∑
j=1

xixjσij where σii = σ2
i .

N variance terms, N(N − 1) covariance terms.

Easier with matrix writing.

Reminder (covariance properties): the covariance is a bilinear form:
Cov(R, aR1 + bR2) = EI [R(aR1 + bR2)]− EI (R)EI (aR1 + bR2)

= a[EI (RR1)− EI (R)EI (R1)] + b[EI (RR2)− EI (R)EI (R2)] = a Cov(R,R1) + b Cov(R,R2).

It is symmetric: Cov(R1, R2) = Cov(R2, R1), positive semi-definite:

Cov(R,R) = V (R) ≥ 0, and
Cov(R,R) = 0 implies that R is a constant random variable (no randomness).

In particular, it satisfies the Cauchy-Schwartz inequality: Cov(X, Y )2 ≤ V (X)V (Y ),
which means that a correlation is always between −1 and 1.

Let ER =


E(R1)
...

E(RN )

 and Σ =


σ11 ... σ1N

... ... ...

σN1 ... σNN

, returns covariance matrix for the N assets.

A portfolio is given by its weights X =


x1

...

xN

. We have RX = tX


R1

...

RN

 and EI (RX) = tXER .

For 1 ≤ i ≤ N , Cov(Ri, RX) =
∑

j xjCov(Ri, Rj) =
∑

j σijxj then


Cov(R1, RX)
...

Cov(RN , RX)

 = ΣX.

For another portfolio given by its weights Y =


y1

...

yN

 (yi = proportion of wealth invested in asset

i), we have: Cov(RY , RX) =
∑

i yiCov(Ri, RX) then Cov(RY , RX) = tY ΣX .

Note: 1. this result holds even if
∑

i xi is not equal to 1.

2. The proof could simply use the reminder at the end of the on of exercise 4, with R=

R1

...

RN

:

Cov(RX , RY ) = Cov( tXR, tY R) = tXCov(R,R)Y = tY ΣX.

Therefore V (RX) = tXΣX .

The covariance matrix is symmetric and positive semi-definite, i.e. tXΣX ≥ 0 for any X.

If Σ is invertible (its lines are linearly independent, Σ is then positive definite), (X, Y ) 7→ tXΣY is
a symmetric positive definite bilinear form (scalar product): tXΣX > 0 for all non-zero vectors X.
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Note: tXΣX = 0 ⇔ V (
∑N

i=1 xiRi) = 0 ⇔
∑N

i=1 xiRi non-random ⇔ X risk-free portfolio.

Then Σ invertible means that the returns are ”linearly independent”, meaning that it is not possible
to combine the assets in a risk-free portfolio. All possible portfolios built with these assets are risky.

2.2 Diversification

We assume N ≥ 2 and no short sales (for any portfolio, ∀i, xi ≥ 0).

? When all assets are independent: V (RX) =
∑

i x
2
i σ

2
i .

For a portfolio containing at least 2 different assets, ∀i, xi < 1 thus x2
i < xi, V (RX) <

∑
i xiσ

2
i ,

which is the average variance of the returns.
= diversification; portfolio less risky than single assets.

If equal amounts are invested in each asset: xi = 1
N ,

V (RX) =
∑

i
1

N2 σ2
i = 1

N

∑
i

σ2
i

N = 1
N× average variance of the returns.

For N large, V (R) approaches 0.

? Non-independent assets with xi = 1
N :

V (RX) =
1
N

∑
i

σ2
i

N︸ ︷︷ ︸
average variance

+
N − 1

N

∑
i6=j

σij

N(N − 1)︸ ︷︷ ︸
average covariance

=
1
N

σ2
i +

N − 1
N

σij .

For N large, 1st term approaches 0, 2nd term approaches the average covariance.

The individual risk of securities can be diversified away, but the contribution to the total risk caused
by the covariance terms cannot be diversified away.

Effect of diversification on portfolio risk: the minimum variance is obtained for very large portfolios
and is equal to the average covariance between all stocks in the population. For an index where N

is large, one can get close to the average covariance.

How is V (RX) = tXΣX modified by changing xi? (without assuming
∑

i xi = 1)

def: gradient of a function f defined on IRN (denoted by ∇f): vector of its N partial derivatives.
The gradient of X 7→ tXΣX is 2ΣX.

Indeed: can be proven by full calculus (expanding the matrix product, see exercise 4) or:
the gradient of X 7→ tAX if A is a column vector with N lines, is A.

The gradient of (X, Y ) 7→ tY ΣX is tΣY w.r.t. X and ΣX w.r.t. Y (since tY ΣX = tX tΣY ).
Then the gradient of X 7→ tXΣX w.r.t. X is tΣX + ΣX = 2ΣX.

We saw ΣX =


Cov(R1, RX)
...

Cov(RN , RX)

, then for 1 ≤ i ≤ N ,
∂V (RX)

∂xi
= 2Cov(Ri, RX).

Therefore the effect on V (RX) of increasing xi is proportional to Cov(Ri, RX):
if this covariance is positive, V (RX) increases.

Cov(Ri, RX) is a measure of the marginal contribution of asset i to the portfolio risk.
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2.3 Portfolios built with two risky assets

We represent in the mean/standard deviation plane (expected return plotted against standard
deviation of the return, i.e. volatility) the investment opportunity set, i.e. the portfolios that can
be built when combining 2 risky assets. This set depends on whether short selling is allowed or not.

Def (for any number of assets) : Global minimum variance portfolio (GMV)
= the portfolio that has the lowest risk of any feasible portfolio.

Same notations as before. We assume for example 0 < σ1 ≤ σ2 (both assets are risky).

We have x2 = 1− x1. To simplify the writing below, we set x = x1 ie X =

(
x

1− x

)
.

The portfolio’s expected return is obtained as:
EI (RX) = xEI (R1) + (1− x)EI (R2) = xµ1 + (1− x)µ2, where µi = EI (Ri).

With ρ denoting the correlation between R1 and R2: ρ =
σ12

σ1σ2
∈ [−1, 1],

the portfolio return variance is: V (RX) = x2σ2
1 + 2x(1− x)ρσ1σ2 + (1− x)2σ2

2.

2.3.1 Short sales not allowed

For x ∈]0, 1[, V (RX) is an increasing function of ρ.

• ρ = 1: perfectly correlated assets
V (RX) = [xσ1 + (1− x)σ2]2 or σ(RX) = xσ1 + (1− x)σ2.

All the combinations of the 2 assets lie, in risk and return space,
on a straight line between asset 1 and asset 2. Indeed:(

EI (RX)
σ(RX)

)
= x

(
µ1

σ1

)
+ (1− x)

(
µ2

σ2

)

(note: the equation of the line can be computed when σ1 < σ2: x = σ(RX)−σ2

σ1−σ2

then EI (RX) = σ(RX)−σ2

σ1−σ2
µ1 + (1− σ(RX)−σ2

σ1−σ2
)µ2 = cste + cste σ(RX)).

There is no reduction in risk from purchasing both assets. Asset 1 is the GMV portfolio.

Note that in the particular case where σ1 = σ2 and ρ = 1, we get for any combination of the 2 assets:

V (RX) = σ2
1 [x2 + 2x(1 − x) + (1 − x)2] = σ2

1 . All the portfolios have the same risk, they are all a GMV

portfolio, the preferred portfolio will be asset i such that µi = max(µ1, µ2).

• ρ = −1: assets move together but in exactly opposite directions.
σ(RX) = |xσ1 − (1− x)σ2| risk smaller than for ρ = 1.

A portfolio with x = σ2
σ1+σ2

∈]0, 1[ will have zero risk (involves positive investment in both securities).

If x ≥ σ2
σ1+σ2

, σ(RX) = xσ1 − (1− x)σ2 and(
EI (RX)
σ(RX)

)
= x

(
µ1

σ1

)
+ (1− x)

(
µ2

−σ2

)
.

If x ≤ σ2
σ1+σ2

, σ(RX) = −xσ1 + (1− x)σ2 and(
EI (RX)
σ(RX)

)
= x

(
µ1

−σ1

)
+ (1− x)

(
µ2

σ2

)
.
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Then x = σ(RX)+σ2

σ1+σ2
or x = σ(RX)−σ2

σ1+σ2
and EI (RX) = xµ1 + (1 − x)µ2 = cste + cste σ(RX) in

both cases.

The opportunity set is constituted of 2 straight lines crossing at the point where σ(RX) = 0 (i.e.
x = σ2

σ1+σ2
), which corresponds to the GMV portfolio.

In that case, diversification is possible.

• Intermediate values of ρ: σ(RX) is increasing with ρ.
It reaches its lowest value for ρ = −1 and its highest value for ρ = 1.
In the plane, the 2 curves represent the limits which all portfolios of
these two securities will lie within for intermediate values of ρ.
A given value of x corresponds to an horizontal line (EI (RX) given).

For a given ρ, there is a value of x that minimizes the portfolio risk:

V (RX) = f(x) where f(x) = x2σ2
1 + 2x(1− x)ρσ1σ2 + (1− x)2σ2

2 = αx2 − 2xσ2(σ2 − ρσ1) + σ2
2

with α = σ2
1 − 2ρσ1σ2 + σ2

2 ≥ σ2
1 − 2σ1σ2 + σ2

2 = (σ1 − σ2)2 ≥ 0,
α = 0 iff ρ = 1 and σ1 = σ2, we exclude that case (treated above). Then α > 0.

We can prove (see Exercise 5.) that f has a unique minimum, at x∗ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

.

We have ρσ1 < σ2 (indeed ρσ1 ≤ σ2 and ρσ1 = σ2 iff ρ = 1 and σ1 = σ2, excluded) then x∗ > 0.

And x∗ ≤ 1⇔ σ1 − ρσ2 ≥ 0, then:

- For ρ < σ1
σ2

, x∗ ∈]0, 1[, i.e. the risk is minimum at a portfolio that is not one of the 2 assets (e.g.
case ρ = −1 above). f has a strict minimum at x∗, then f(x∗) < f(1) = σ2

1.

- For ρ ≥ σ1
σ2

, f(x) ≥ x2σ2
1 + 2x(1− x)σ2

1 + (1− x)2σ2
2 ≥ σ2

1, no portfolio less risky than asset 1 (e.g.

case ρ = 1 above). Note that if ρ = σ1
σ2

, x∗ = σ2
2−σ2

1

σ2
1−2σ2

1+σ2
2

= 1.

Conclusion (relationship between expected return and standard deviation of the return for vari-
ous correlation coefficients when short sales are not allowed):

- Combinations of 2 assets can never have more risk than the risk found on the straight line connect-
ing the 2 assets in mean / standard deviation space (from σ(RX) increasing function of ρ). These
combinations are on the left of that line.

- For ρ < σ1
σ2

, the GMV portfolio is strictly less risky
than the least risky asset; diversification is possible.

- For ρ ≥ σ1
σ2

, the risk on the portfolio can no longer be made
less than the risk of the least risky asset in the portfolio.
The GMV portfolio is asset 1 (the least risky asset), no diversification effect.

- The lower (closer to -1) the correlation coefficient between assets (all other attributes held con-
stant), the higher the payoff from diversification.

2.3.2 Short sales allowed

An investor can sell a security that he does not own (and buy it back later). Short selling involves
taking a negative position in the security (equivalent to: borrow, sell, buy back to reimburse).
We assume that there are no transaction costs involved in this process.
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Note that a portfolio where I sell n assets 2 and put the outcome in asset 1 is not

considered (as W0 would be 0, excluded).

Now we can have x < 0 (curve beyond asset 2)
or x > 1 (curve beyond asset 1).

? No limit anymore to the expected return of feasible portfolios.
Indeed one can sell asset 1 (if it has the lowest expected return)
to invest more in asset 2 (x < 0).

? The point x∗ where f is minimum is now achievable by a portfolio, even if ρ > σ1
σ2

(then x∗ > 1).
Diversification is then always possible. The GMV always corresponds to the minimum of f .

(see details in Exercise 6).

2.4 Delineating efficient portfolios for N risky assets

As for 2 assets, we represent the opportunity set (possible portfolios) in the mean/standard devi-
ation plane and the subset of portfolios that will be preferred by all investors (efficient portfolios)
under mean/variance assumption.
These sets depend if short selling and lending/borrowing (of funds) are allowed or not.

2.4.1 The shape of the opportunity set for N risky assets, no risk-free asset

= set of all possible combinations of assets in the mean/standard deviation space.
In the next section, we will analytically determine this set. Here, we say a few things about its
shape.

The points on the frontier of this set will correspond to portfolios that have the smallest risk for a
given expected return.

Th: The portion of the frontier that lies above (below) the GMV portfolio is concave (convex).

Proof: combinations of the GMV portfolio (point the most on the left) and another portfolio A on
the frontier:

? a portfolio A that has a higher return (and higher variance). Possible shapes?

a: NO. The combinations of GMV and A would be missing:
all combinations of GMV and A must lie either on the straight line
connecting GMV and A or above this straight line.

b: NO. Here all portfolios have less risk than the straight line
connecting the 2 assets, which is fine.
But, U and V are portfolios (combinations of GMV portfolio and asset A)
then all combinations of U and V must lie either on the straight line
connecting U and V or above this straight line.

c = only possible shape: concave.

? a portfolio A with a lower return (and higher variance).
Same arguments (the combinations of GMV and A
are on the left of the line connecting these 2 points):
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Efficient portfolios
An investor will prefer a lower risk for the same return, and a bigger return for the same risk.

A portfolio is said to be efficient if
there is no portfolio with the same risk and a higher expected return
there is no portfolio with the same expected return and a lower risk.

Other portfolios are called ”dominated”.

a. The efficient frontier with no short sales

B preferred to A (higher return with same risk)
C preferred to A

Therefore the set of efficient portfolios cannot
include interior portfolios (dominated portfolios).

D preferred to E
This is true for every other portfolio as we move up the outer shell from B to C.

Point C cannot be eliminated since there is no portfolio that has less risk for the same return or more
return for the same risk. C is the GMV portfolio (it has the lowest risk of any feasible portfolio).
F is on the outer shell, but D has less risk for the same return.
As we move up the outer shell curve from F, all portfolios are dominated until we come to B.
B represents that portfolio (usually a single security) that offers the highest expected return of all
portfolios.

Thus the efficient set (called the efficient frontier) consists of the envelope curve of all portfolios
that lie between the GMV portfolio and the maximum return portfolio, i.e. the higher part of the curve
(there can be linear segments between two perfectly correlated efficient portfolios).
The efficient frontier is concave.

b. The efficient frontier with short sales allowed
There is no limit anymore to the expected return of the portfolios one can build. Indeed one can
sell securities with low expected returns and use the proceeds to buy securities with high expected
returns.

The efficient set still starts with the GMV portfolio, but when
short sales are allowed it has no finite upper bound
(the curve goes beyond the maximum return portfolio).

2.4.2 The shape of efficient frontier when there is a risk-free asset

Until now, we have been dealing with portfolios of risky assets. We introduce now a risk-free asset
into our portfolio possibility set. Risk-free lending and borrowing are possible.

Lending at a risk-free rate ⇔ investing in an asset with a certain outcome.
Borrowing ⇔ selling such a security short. This takes place at the risk-free rate (unique from an
assumption of no arbitrage opportunity).

r certain (rate of) return on the risk-free asset. The standard deviation of this return is 0.
We assume that investors can lend and borrow unlimited amounts of funds at the risk-free rate.
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1. The investor is interested in placing part of the funds in some portfolio A and either lending or
borrowing.
Determine the geometric pattern of all combinations of (long) portfolio A and lending or borrowing.
x ≥ 0 fraction of wealth invested in portfolio A. The investor can borrow at the risk-free rate and
invest more than his initial funds in portfolio A. Then x can be greater than 1.

Expected return of the investment: EI (R) = xEI (RA) + (1− x)r = r + x[EI (RA)− r].
Risk: σ(R) = xσ(RA).

Then EI (R) = r + EI (RA)−r
σ(RA) σ(R),

i.e. all combinations of risk-free lending or borrowing with portfolio A
lie on a straight line in mean/standard deviation plan.

Intercept of the line on the return axis: r.
The line passes through the point (σA, E(RA)). Left (right) of point A

= combinations of portfolio A and lending (borrowing).

2. changing A: e.g. B, combinations have greater return for the same risk

⇒ rotate the line as far as possible, until it becomes
tangent to the efficient frontier (for the set of risky assets).

there are no portfolios lying above the line passing through r and T .

All investors should hold the portfolio of risky assets T

(same for all investors, whatever their risk-aversion).

Some of these investors who are quite risk-averse would select a portfolio along the segment rT

(combination of risk-free asset and T ).
Others would hold portfolios on the half-line beyond T , borrowing funds and placing their original
capital plus the borrowed funds in risky portfolio T .
Or T alone.

All of these investors will hold risky portfolios with the exact composition of portfolio T .
Then identifying T solves the portfolio problem. The ability to determine the optimum
portfolio of risky assets without having to know anything about the investor is called the
separation theorem.

Draw the efficient frontier under more restrictive assumptions about the ability of investors to
borrow at the risk-free rate (exercise 7):

a. if they cannot borrow at all,
b. if they can lend at one rate, but must pay a higher rate r′ to borrow.



Q.E.M., M.M.E.F. Portfolio theory and asset pricing Preliminary version 12

2.5 Calculation of the efficient frontier when there is no risk-free asset

Assumptions:

- N risky assets, Ri = (rate of) return of asset i, 1 ≤ i ≤ N . σi = standard deviation of Ri.

- The EI (Ri) are not all equal (else, the best portfolio is just the asset i with the smallest σi).

- No risk-free asset. Then cash lending or borrowing is not permitted.

In particular: · σi > 0 (really risky assets),
· the covariance matrix of the N assets’ returns, Σ, is invertible: it is not possible to combine
the assets in a risk-free portfolio (possible portfolios are all risky).
Σ is then symmetric positive definite.

- Short sales are allowed, i.e. xi = fraction of the portfolio invested in asset i can be negative: if W0

is the total wealth, |xi|W0 is the cash obtained from the sale of asset i, this cash will be invested in
some other assets. We keep

∑N
i=1 xi = 1 but xi can have any sign: xi ∈ IR.

2.5.1 Minimum variance frontier

= portfolios which minimize the return variance for a given expected return µ.

A portfolio given by its weights on the N assets, X = (xi)i=1...N , corresponds to a minimum variance
portfolio iff it solves the optimization problem:

MinV (RX) under the constraints EI (RX) = µ and
N∑

i=1

xi = 1.

Reminder: for a portfolio X, we have RX =
N∑

i=1

xiRi = tRX,

then EI (RX) = tERX where ER =


EI (R1)

...

EI (RN )

 and V (RX) = tXΣX with Σ =

 σ11 ... σ1N

... ... ...

σN1 ... σNN

.

Then we have to solve:

Min tXΣX under the constraints tERX = µ and t1X = 1, with 1 =


1
...

1

.

quadratic programming problem, solved by method of Lagrangian multipliers
(standard method to find the extrema of a function subject to constraints).

The function X 7→ tXΣX is convex on IRN , indeed the square matrix of its second-order partial
derivatives (the covariance matrix 2Σ) is positive definite. Note also that our second assumption
implies ER not proportional to 1.

The Lagrangian is L = tXΣX + λ
(
µ− tERX

)
+ γ

(
1− t1X

)
.

Necessary condition to have a minimum: the derivatives w.r.t. X, λ, and γ have to be null.

Note:
∂L
∂λ

=
∂L
∂γ

= 0 ⇐⇒ the contraints are satisfied.

The problem (N equations, p = 2 constraints, N unknowns) becomes an unconstrained problem (N + p

equations, N + p unknowns) when the multipliers are added in the variables.

The gradient of X 7→ tXΣX is 2ΣX.
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Necessary and sufficient conditions to have a global minimum:

2ΣX − λER − γ1 = 0 ,
∂L
∂λ

= µ− tERX = 0 and
∂L
∂γ

= 1− t1X = 0.i.e.
∂L
∂xi

= 2
N∑

j=1

xjσij − λEI (Ri)− γ = 0 for i = 1, ..., N , µ−
N∑

i=1

xiEI (Ri) = 0 and 1−
N∑

i=1

xi = 0

)
.

We get (with Σ−1 the inverse matrix of Σ): 2X = λΣ−1ER + γΣ−11,

thus µ = 1
2(λ tERΣ−1ER︸ ︷︷ ︸

b

+γ tERΣ−11︸ ︷︷ ︸
a

) and 1
2(λ t1Σ−1ER︸ ︷︷ ︸

a

+γ t1Σ−11︸ ︷︷ ︸
c

) = 1,

with a = t1Σ−1ER = tERΣ−11, b = tERΣ−1ER, c = t1Σ−11.

Note that b, c > 0 since Σ−1 is a symmetric positive definite matrix (and ER cannot be the vector
0 as not proportional to 1).

Let d = bc− a2. We have d > 0, indeed (X, Y ) 7→ tXΣ−1Y is a symmetric positive definite bilinear
form (scalar product), then the Cauchy-Schwartz inequality applies:

a2 = ( tERΣ−11)2 ≤ tERΣ−1ER · t1Σ−11 = bc and not equal since ER not proportional to 1.

We have: 2X = λΣ−1ER + γΣ−11, µ = 1
2(λb + γa) and 1

2(λa + γc) = 1.

Therefore λ = 2 cµ−a
d and γ = 2 b−aµ

d .

Then the composition of the frontier portfolio with an expected return equal to µ is given by:

X =
cµ− a

d
Σ−1ER +

b− aµ

d
Σ−11

Any portfolio of the frontier can be represented by a vector X satisfying this equation, for µ =
E(RX). And any portfolio given by such a vector is a frontier portfolio:

Th: The minimum variance frontier is composed of all portfolios P (µ), µ ∈ IR such that,
for a given expected return µ, the relative weights are:

X(µ) =
µ

d
Σ−1 (cER − a1) +

1
d
Σ−1 (−aER + b1),

with a = t1Σ−1ER = tERΣ−11, b = tERΣ−1ER, c = t1Σ−11 and d = bc− a2.

[ i.e. a =
∑N

i=1

∑N
j=1 vijEI (Rj), b =

∑N
i=1

∑N
j=1 vijEI (Ri)EI (Rj), c =

∑N
i=1

∑N
j=1 vij

xi = µ
bc−a2

∑N
j=1 vij(cEI (Rj)− a) + 1

bc−a2

∑N
j=1 vij(b− aEI (Rj)) if Σ−1 = (vij)1≤i,j≤N ].

Th: The minimum variance frontier is a parabola (hyperbola) when expected return is
plotted against return variance (standard deviation).

Proof: variance of the return of a portfolio of the frontier, when EI (RX) = µ:

V (RX) = tXΣX = 1
2

tX(λER + γ1) = 1
2(λ tXER + γ) = 1

2(λµ + γ) = cµ−a
d µ + b−aµ

d .

Therefore V (RX) = 1
d [cE(RX)2 − 2aE(RX) + b] , equation of a parabola.

Generally represented in the mean/standard deviation space, thus hyperbola (see tutorial, exercise
8).
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Particular minimum variance portfolios X(µ) = cµ−a
d Σ−1ER + b−aµ

d Σ−11:
· The GMV portfolio has been defined as having the lowest risk of any feasible portfolio:

∂V (RX(µ))

∂µ = 2
d(cµ− a) = 0 iff µ = a

c , then V (RGMV ) = 1
d [c(a

c )2 − 2aa
c + b] = 1

c .

The GMV portfolio weights are: XGMV = X(a
c ) = b−a a

c
d Σ−11 = 1

cΣ
−11.

· for a 6= 0: X( b
a) = c b

a
−a

d Σ−1ER = 1
aΣ−1ER.

Notes: 1. if a > 0, b
a > a

c , then X( b
a) is above the GMV portfolio. Else, it is below.

2. we have: ∀µ ∈ IR, X(µ) = cµ−a
d aX( b

a) + b−aµ
d cXGMV : any minimum variance portfolio is

the linear combination of the 2 minimum variance portfolios X( b
a) and XGMV .

The parabola equation can be rewritten by taking the GMV portfolio as the origin:
V (RX(µ))− V (RGMV ) = 1

d [cµ2 − 2aµ + b]− same function at a
c .

Then V (RX(µ))− 1
c = 1

d{c[µ
2 − (a

c )2]− 2a[µ− a
c ]} = 1

d [µ− a
c ][cµ + a− 2a] = c

d [µ− a
c ]2.

Therefore V (RX)− 1
c = c

d [E(RX)− a
c ]2 .

Covariance of the GMV portfolio return with the return of any combination of assets:

Cov(RGMV , RX) = tXGMV ΣX = 1
c

t(Σ−11)ΣX = 1
c

t1X = 1
c = V (RGMV ).

2.5.2 Efficient frontier

Th: The efficient frontier is the upper half of a parabola (hyperbola) when expected return
is plotted against return variance (standard deviation). It is composed of all portfolios
P (µ), µ ≥ a

c such that, for a given expected return µ, the relative weights are given by:

X =
µ

d
Σ−1 (cER − a1) +

1
d
Σ−1 (−aER + b1), with a, b, c, d as before.

Equation of the efficient frontier: V (RX) = 1
d [cE(RX)2 − 2aE(RX) + b] for EI (RX) ≥ a

c .

upper half of a parabola starting from the point (1
c ,

a
c ) (GMV), with a positive slope

(or of a hyperbola starting from the point ( 1√
c
, a

c ) in the mean / standard deviation plane).

Ex: the GMV portfolio is efficient, and for a > 0, X( b
a) is efficient. If a < 0, X( b

a) is dominated.

Two-fund separation theorem (Black, 1972):
The efficient frontier can be generated from any 2 efficient portfolios.

i.e. if X1, X2 are 2 different efficient portfolios, any other efficient portfolio can be written αX1 +
(1− α)X2.

Proof: the same result holds in fact for the whole minimum variance frontier: it is generated from
any 2 minimum variance (MV) portfolios. We start with that case.

A MV portfolio satisfies:

X =
E(RX)

d
Σ−1 (cER − a1) +

1
d
Σ−1 (−aER + b1) = E(RX)G + H (linear in E(RX))

with G = 1
dΣ−1(cER − a1) and H = 1

dΣ−1(b1− aER) ∈ IRN .
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- Let X1, X2 be 2 different MV portfolios, then they have different expected returns (indeed one-
to-one mapping µ 7→ X(µ) efficient). Then, any 3rd MV portfolio X3 can be written as a linear
combination of X1 and X2. Indeed:

there exists α such that E(RX3) = αE(RX1) + (1− α)E(RX2),
then X3 = E(RX3)G + H = α[E(RX1)G + H] + (1− α)[E(RX2)G + H] = αX1 + (1− α)X2.

Therefore the minimum variance frontier is: {αX1 + (1− α)X2| αX ∈ IR}.

- Let X1, X2 be 2 different efficient portfolios, the MV frontier is still {αX1 + (1−α)X2| αX ∈ IR},
but if we restrict the possible values for α, we get the efficient frontier:
if for example E(RX1) < E(RX2),
αX1 +(1−α)X2 is efficient iff αE(RX1)+(1−α)E(RX2) ≥ a

c ie α[E(RX2)−E(RX1)] ≤ E(RX2)− a
c

The efficient frontier is then the set {αX1 + (1− α)X2 | α ≤
E(RX2

)−a
c

E(RX2
)−E(RX1

)}.

Consequence: you can combine 2 (or more) investment managers who have efficient portfolios, your
portfolio will remain efficient (as soon as the proportions of both portfolios satisfy above inequality).

Remark: we saw that a portfolio X is efficient iff: ΣX = cE(RX)−a
d ER + b−aE(RX)

d 1 and E(RX) ≥ a
c

(then the 1st coefficient is ≥ 0).

The next theorem states that such a linear relationship characterises the efficient portfolios.

Th (Roll): Necessary and sufficient condition for a portfolio X to be efficient:

∃λX , γX with λX ≥ 0 s.t. ΣX = λXER + γX1 (positive linear relationship between ΣX

and ER),

i.e.


Cov(R1, RX)
...

Cov(RN , RX)

 = λX


EI (R1)
...

EI (RN )

+ γX


1
...

1

 (N equations).

Proof: portfolio given by its weights X. The vector of covariance (Cov(Ri, RX))i is equal to ΣX.
To be proved: ΣX is a linear combination of vectors ER and 1.

1. If X is efficient, this is satisfied with λX = cE(RX)−a
d ≥ 0 (in fact > 0 except for the GMV

portfolio).

2. if X satisfies ΣX = λXER + γX1:
we get 2 conditions over λX and γX by computing t1X and tERX:

multiplying left by t1Σ−1, we get t1X = λX
t1Σ−1ER + γX

t1Σ−11, ie 1 = λXa + γXc.

Then, first proof: multiplying left by tERΣ−1, we get
tERX = λX

tERΣ−1ER + γX
tERΣ−11, ie E(RX) = λXb + γXa

then cE(RX) = λXbc + (1− λXa)a and λX = cE(RX)−a
d , which implies E(RX) ≥ a

c ,

while γX = 1
c [1− a cE(RX)−a

d ] = 1
cd [bc− a2 − acE(RX) + a2] = 1

d [b− aE(RX)].

We get ΣX = cE(RX)−a
d ER + b−aE(RX)

d 1 with E(RX) ≥ a
c . Then X is efficient.

or, second proof (but only if a 6= 0): X = λXΣ−1ER + γXΣ−11 = λXaX( b
a)+ γXcXGMV is a linear

combination of 2 MV portfolios, then it is a MV portfolio.
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Moreover, E(RX) = λXa b
a + γXca

c = λXa b
a + (1− λXa)a

c = a
c + λX(b− a2

c ) = a
c + λX

d
c ≥

a
c .

Therefore X is efficient.

We saw that Cov(Ri, RX) is a measure of the marginal contribution of asset i to the portfolio risk
(end of 2.2). Here we see that a portfolio is mean-variance efficient iff the marginal contribution of
each asset to the portfolio risk is a linear function of the assets’ expected returns.

We now rewrite the linear relationship of Roll theorem. The coefficients will be expressed in terms
of an orthogonal portfolio.

2.5.3 Orthogonal portfolio

Th: To any minimum variance portfolio X different from GMV can be associated another
minimum variance portfolio X⊥ that is not correlated to X (Cov(RX , RX⊥) = 0), called
orthogonal portfolio of X (it is orthogonal for the metrics (Y, Z) 7→ tY ΣZ).

X⊥ is on the opposite part of the frontier and satisfies E(RX⊥) =
aE(RX)− b

cE(RX)− a
.

We have also (X⊥)⊥ = X.

Proof: any minimum variance portfolio X(µ) satisfies X(µ) = 1
dΣ−1([cµ− a]ER + [b− aµ]1).

We set µX = E(RX).
For any other portfolio Y (combination of the N risky assets, not necessarily a MV portfolio), let
µY = E(RY ). We have:

Cov(RX , RY ) = tXΣY = 1
d([cµX − a] tER + [b− aµX ] t1)Y

= 1
d([cµX − a]µY + [b− aµX ]) = c

d([µX − a
c ]µY + b

c −
a
c µX) = c

d(µX − a
c )(µY − a

c ) + 1
c .

Then Cov(RX , RY ) = 0⇔ (µX − a
c )(µY − a

c ) = − d
c2

By assumption µX 6= a
c then Cov(RX , RY ) = 0 ⇔ (cµX −a)(cµY −a) = a2− bc ⇔ µY = aµX−b

cµX−a .

The portfolios on the half-line corresponding to this value of the expected return are not correlated
to X.

We define X⊥ as the minimum variance portfolio Y among these portfolios.

We have Cov(RX , RX⊥) = 0 and EI (RX⊥) = aµX−b
cµX−a .

Note that if µX > a
c , then µX⊥ < a

c (from c
d(µX − a

c )(µX⊥ − a
c ) < 0) and inversely if X is a frontier

portfolio that is dominated.

Note: we get for X on the upper part of the frontier (µX ≥ a
c ) and any other portfolio Y s.t.

µY ≥ a
c :

Cov(RX , RY ) = c
d(µX − a

c )(µY − a
c ) + 1

c > 0:
X is positively correlated with any portfolio with an expected return larger that a

c ,
in particular all the efficient portfolios are positively correlated.

Geometric construction of the orthogonal portfolio:

1. The line (GMV X) in the variance/mean plane cuts the mean-axis at point (0, µX⊥).

Proof: see tutorial (exercise 9).
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2. In the (σ(·), E(·)) plane, the tangent to the frontier at X cuts the mean-axis at point (0, µX⊥).

Proof: the equation of the upper part of the frontier (efficient frontier) is
√

σ2 − 1
c =

√
c
d(µ − a

c )

i.e. µ = a
c + g(σ) for σ ≥ 1√

c
, where g(σ) =

√
d
c (σ2 − 1

c ).

Tangent to the frontier at (σ, a
c + g(σ)): line (σ, a

c + g(σ)) + λ(1, g′(σ)), λ ∈ IR,
cuts ordinate axis for λ = −σ, at a point (0, µ′) s.t. µ′ = a

c + g(σ)− σg′(σ)

then (µ− a
c )(µ′ − a

c ) = g(σ)(µ′ − a
c ) = g(σ)2 − σg(σ)g′(σ) = d

c (σ2 − 1
c )−

d
cσ2.

We get (µ− a
c )(µ′ − a

c ) = − d
c2

which proves that µ′ = µX⊥ .

Note that the two previous constructions hold because X is not the GMV portfolio.

Th (Roll bis): Necessary and sufficient condition for a portfolio X to belong to the efficient
frontier (except for GMV): ∃ a portfolio Y non-correlated with X s.t.

ER = E(RY )1 + E(RX)−E(RY )
V (RX) ΣX with EI (RX)− EI (RY ) > 0.

i.e. ∀1 ≤ i ≤ N, E(Ri) = E(RY ) +
E(RX)− E(RY )

V (RX)
Cov(Ri, RX).

Proof: 1. If Y exists, we have a positive linear relationship as in Roll theorem, then X is efficient.

2. For X efficient, ΣX = cµX−a
d ER + b−aµX

d 1,
thus ER = aµX−b

cµX−a1 + d
cµX−aΣX = µX⊥1 + d

cµX−aΣX.

But V (RX) = 1
d [cµ2

X − 2aµX + b] = 1
d [(cµX − a)µX + b− aµX ] = 1

d [(cµX − a)(µX − µX⊥)]

Then d
cµX−a = µX−µ

X⊥
V (RX) , hence the result, with Y = X⊥.

∀i, E(Ri) = µX⊥ + µX−µ
X⊥

σ2
X

Cov(Ri, RX). And µX − µX⊥ > 0 from X efficient 6= GMV.

= positive linear relationship between the expected return of asset i and its marginal contribution
to the risk of an efficient portfolio other than GMV.

2.6 Calculation of the efficient frontier when there is a risk-free asset

Same assumptions:

- N risky assets (∀i, σi > 0),
the EI (Ri) are not all equal, and the covariance matrix of the N assets’ returns, Σ, is invertible.

- Short sales are allowed (no constraints on weights sign).

Plus:
- There exists a risk-free asset: asset 0. Cash lending or borrowing is permitted, at a same risk-free
rate r.
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A portfolio is given by its weights (xi)i=0,...,N where xi ∈ IR is the proportion of wealth invested
in asset i. In fact, the vector of weights on the risky assets is fully determining the portfolio as

x0 = 1−
N∑

i=1

xi = 1− tX1.

Then, for X =


x1

...

xN

, we can denote by RX the return of the portfolio

(
x0

X

)
.

It should be denoted by R(
x0

X

) but no risk of confusion as X determines the portfolio.

We have RX = (1− tX1)r + tX


R1

...

RN

, then EI (RX) = (1− tX1)r + tXER

(note that EI (RX)− r = tX(ER − r1)) and V (RX) =
N∑

i=1

N∑
j=1

xixjσij = tXΣX.

2.6.1 Minimum variance frontier

X = (xi)i=1...N corresponds to a minimum variance portfolio iff it minimizes the return variance for
a given expected return µ, i.e. it solves the optimization problem:

Min tXΣX under the constraint (1− tX1)r + tXER = µ.

Lagrangian L = tXΣX + λ
[
µ− r − tX(ER − r1)

]
Since the covariance matrix Σ is invertible, below conditions are necessary and sufficient to get a
global minimum: ∇L = 2ΣX − λ(ER − r1) = 0

and
∂L
∂λ

= µ− r − tX(ER − r1) = 0. Therefore we have:

Th: The minimum variance frontier is composed of all portfolios P (µ), µ ∈ IR with the
following weights for a given expected return µ (a, b, c as before):

X(µ) =
µ− r

f2
Σ−1(ER − r1), with f =

√
cr2 − 2ar + b and x0 = 1−

N∑
i=1

xi.

Proof: we get X = λ
2Σ−1(ER − r1) and µ − r = tX(ER − r1) = λ

2
t(ER − r1)Σ−1(ER − r1).

As Σ−1 is positive definite and ER and 1 not proportional, t(ER− r1)Σ−1(ER− r1) is positive, we
denote it by f2, with f > 0.
We have f2 = tERΣ−1ER︸ ︷︷ ︸

b

−r t1Σ−1ER︸ ︷︷ ︸
a

−r tERΣ−11︸ ︷︷ ︸
a

+r2 t1Σ−11︸ ︷︷ ︸
c

= b− 2ar + cr2.

Then µ− r = λ
2f2. It gives:

λ

2
=

µ− r

f2
, then X as in the theorem.

Note that the X(µ) for µ ∈ IR are all proportional to vector Σ−1(ER − r1).

Th: Again, the minimum variance frontier is a parabola when expected return is plotted against
return variance.
Proof: for X as in the theorem, we have:

V (RX) = tXΣX =
µ− r

f2
tX(ER − r1) =

µ− r

f2
(E(RX)− r) =

(µX − r)2

f2
.

For µX = r, we get the portfolio minimizing the variance: the risk-free asset.



Q.E.M., M.M.E.F. Portfolio theory and asset pricing Preliminary version 19

Any other portfolio is risky.
The parabola is tangent at the ordinate axis at the corresponding point (0, r).

Then, for any frontier portfolio, we have σX =


µX − r

f
if µX ≥ r

−µX + r

f
else

Therefore, in the space standard deviation / expected return,
the minimum variance frontier is made of 2 half-lines with slopes ±f .

Obviously, only the upper half-line (with the positive slope) corresponds to efficient portfolios. The
portfolios on the other line are dominated.

2.6.2 Tangent portfolio and separation theorem

Is there any minimum variance portfolio containing risky assets only?
Reminder: the portfolios constituted of risky assets are delimited by a hyperbola in the mean /
standard deviation plane (the least risky portfolio satisfies (E(RX), σ(RX) = (a

c , 1√
c
)).

This hyperbola is on the right of the 2 half-lines (which are the minimum variance frontier when
including a risk-free asset). Indeed, the existence of the risk-free asset leads to a lower risk at any
expected return level (and to a higher expected return at any risk level).

A minimum variance portfolio containing only risky assets would satisfy:
tX1 = 1 (i.e. x0 = 0: all the wealth invested in risky assets) and X =

µ− r

f2
Σ−1(ER− r1) (frontier

portolio).

Then tX1 =
µ− r

f2
t(ER− r1)Σ−11 =

µ− r

f2
( tERΣ−11− r t1Σ−11) =

µ− r

f2
(a− cr) has to be equal

to 1.

We assume r 6= a
c . Then tX1 = 1 iff EI (RX)−r =

f2

a− cr
i.e. EI (RX) = r+

cr2 − 2ar + b

a− cr
=

ar − b

cr − a
.

So there exists such a portfolio, T, with EI (RT ) =
ar − b

cr − a
and σ(RT ) =

|µT − r|
f

=
f

|a− cr|
, and it

corresponds to the following allocation XT on the risky assets:

XT =
E(RT )− r

f2
Σ−1(ER − r1) =

1
a− cr

Σ−1(ER − r1) since EI (RT )− r =
f2

a− cr
.

Note that EI (RT ) > r iff a− cr > 0.

Also, T cannot be the GMV portfolio, indeed, we would have EI (RT ) =
a

c
then c(ar−b) = a(cr−a)

and d = 0 (which is excluded by the assumption that the EI (Ri) are not all equal).

T minimizes the variance among the portfolios built on the N + 1 assets. It belongs to the set of
portfolios built on the N risky assets only, so it minimizes the variance on this set as well. That
means that it belongs to the hyperbola.
T is the intersection of the hyperbola with one of the two half-lines mentioned above: the upper
line iff T is efficient, which happens iff EI (RT ) > r, i.e. iff r < a

c . Else, if r > a
c , T is on the lower line.

Since EI (RT ) =
ar − b

cr − a
, portfolio T⊥ (exists as T 6= GMV) has an expected return equal to r.

That means the line (0, r)− T in the (E(·), σ(·)) plane is tangent to the hyperbola at T (see 2nd
Geometric construction of the orthogonal portfolio), as announced in 2.4.2.
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Two-fund separation theorem (Tobin, 1958)
As before, the minimum variance frontier can be generated from any 2 minimum variance portfolios.
But we have a more precise result here:

Th: When r 6= a
c , any minimum variance portfolio can be written as a linear combination of the

risk-free asset and the tangent portfolio T .

Proof: any minimum variance portfolio satisfies: X =
µX − r

f2
Σ−1(ER − r1).

But XT =
1

a− cr
Σ−1(ER − r1), then X =

µX − r

f2
(a− cr)XT = αXXT , with αX ∈ IR

and tX1 = 1− x0 = αX
tXT1 = αX .

Thus the portfolio is the combination of αX portfolio T and 1− αX risk-free asset.

Precisely, we have:

(
x0

X

)
= αX

(
0

XT

)
+ (1− αX)

(
1
0

)
, with αX = V (RX)

E(RX)−r (a− cr).

Note that: V (RX) = tXΣX = α2
X

tXT ΣXT = α2
XV (RT ).

2.6.3 Efficient frontier

Th: The efficient frontier is composed of all portfolios P (µ), µ ≥ r with the following
weights for a given expected return µ (with a, b, c as before):

X(µ) =
µ− r

f2
Σ−1(ER − r1), with f =

√
cr2 − 2ar + b and x0 = 1− tX1.

The efficient frontier starts at point (0, r) (risk-free asset).
For the other portfolios, the higher the variance the higher the expected return.

Note: we get, for any efficient portfolio: E(RX)−r
σ(RX) = f , this is known as the Sharpe ratio (see exercise

16). We can see here that this ratio is the same for all efficient portfolios.

When r 6= a
c , any efficient portfolio is the combination of 1−αX risk-free asset and αX portfolio T.

The combination of risky assets will then be the same for all investors. But the quantities of risk-free
asset / portfolio T depend on each investor’s risk aversion.

• If r < a
c , T satisfies µT = EI (RT ) > r, T is on the upper line and σT =

µT − r

f
=

f

a− cr
.

The portfolio T is efficient and the efficient frontier is tangent to the hyperbola at T .

Efficient frontier = {αX portf T + (1− αX) risk-free asset | 0 ≤ αX}.
Indeed X efficient iff EI (RX)− r ≥ 0 but EI (RX)− r = αX(EI (RT )− r) has the sign of αX .
αX ≥ 1 means borrowing at r to buy more of T.
The other line (dominated portfolios) corresponds to short sales of T,
with product of sale invested at rate r.

• If r > a
c , T satisfies µT < r (below (0, r)), then σT =

−µT + r

f
=

f

cr − a
.

The portfolio T is dominated.
The line with a negative slope is tangent to the hyperbola.
Intersection at T s.t. (µT , σT ) = ( b−ar

a−cr , f
cr−a).
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Efficient frontier = {αX portf T + (1− αX) risk-free asset | αX ≤ 0}.
All efficient portfolios are obtained by short selling T, to invest at rate r

(combination with positive weight αX on T are dominated).

• If r = a
c , no intersection between the 2 straight lines and the hyperbola.

Then f2 = cr2 − 2ar + b = a2

c − 2a2

c + b = bc−a2

c = d
c . The 2 straight lines are given by:

σX =


√

c
d [µX − r] if µX ≥ r√
c
d [−µX + r] else

i.e. µX = a
c ±

√
d
cσX . Exercise 15.1: Prove that the 2 lines constituting the MV frontier correspond

to the asymptotes of the hyperbola.

Any minimum variance portfolio satisfies:
X = c

µX − r

d
Σ−1(ER −

a

c
1) = (µX − r)XA, with XA =

c

d
Σ−1(ER −

a

c
1).

We denote by A the combination of risky assets corresponding to the vector of weights XA.

Exercise 15.2: Prove that investing in A costs nothing.

15.3: Prove that the portfolio

(
1

XA

)
is efficient and compute its return and its variance.

15.4: Prove that the efficient frontier is {αX portf

(
1

XA

)
+ (1− αX) risk-free asset | αX ≥ 0}.

Any minimum variance portfolio is obtained by investing all wealth in the risk-free asset and holding
more or less of A.

Note that we will see that at market equilibrium, necessarily r < a
c .

Th (Roll): Necessary and sufficient condition for a risky portfolio X to belong to the

efficient frontier: ∀i, E(Ri) = r +
E(RX)− r

V (RX)
Cov(Ri, RX) with EI (RX)− r > 0.

Note: above result holds, whatever the relative positions of r and a
c .

Proof: in the previous version, X⊥ was needed. Here, any efficient portfolio can be expressed in
terms of T or A. Only T⊥ is used.

1. X efficient ⇒ ΣX = µX−r
f2 (ER − r1) ⇒ ∀i, E(Ri) = r + f2

µX−rCov(Ri, RX) while V (RX) =
[µX−r

f ]2.

2. if relation holds, ΣX = V (RX)
E(RX)−r (ER − r1). But Σ−1(ER − r1) is equal to (a− cr)XT or d

cXA:

If r 6= a
c , X = V (RX)

E(RX)−r (a− cr)XT , remaining wealth is in the risk-free asset ⇒ X efficient
(combination of T and risk-free asset).

If r = a
c , X = V (RX)

E(RX)−r
d
cXA, remaining in risk-free asset ⇒ efficient. Indeed tX1 = 0, then,

the portfolio corresponding to X is:

(
1
X

)
= αX

(
1

XA

)
+ (1− αX)

(
1
0

)
, with αX = V (RX)

E(RX)−r
d
c .
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3 Limits in the practical implementation

The mean-variance portfolio analysis has several limits when implemented.

Amount of required input data
The model requires a huge number of estimates to fill the covariance matrix.
Example: N = 100 ⇒ 100 estimates of expected returns, 100 estimates of variance, N(N−1)

2 = 4950
estimates of covariances.
Also, estimation of the covariance coefficients can lead to inconsistent values (the matrix has to be
definitive positive).
In the next chapter, the estimation of the covariance matrix is simplified.

Also portfolio managers typically have reliable returns forecasts for only a small subset of assets.
Quality forecasts for the variance-covariance structure is even harder to obtain.
The ex post performance of the resulting weighting schemes depends heavily on the quality of the
input data, especially the vector of expected returns. Historical returns are bad proxies for future
expected returns.

Extreme portfolio weights
Optimized allocations tend to include large short positions, which cannot be justified by the portfolio
manager in a client’s portfolio. They also tend to overweight assets with large expected returns,
negative correlations and small variances, but intuitively, assets with extreme returns tend to be
the most affected by estimation error.

Instability of portfolios weights
Optimal allocations are particularly sensitive to changes in expected returns.
Small changes in input variables can cause dramatic changes in the weighting schemes.
Remedies: - data cleaning (delete outliers, i.e. very extreme observations with very small probability,
- resampling techniques, shrinkage estimators techniques,
- introduce constraints to avoid extreme weights (may come from client-specific or legal restrictions).
Give better results.
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Chapter II Capital Asset Pricing Model

The preceding chapter has been concerned with how an individual, acting upon a set of estimates,
could select an optimal portfolio. If investors act as prescribed, we should be able to determine how
the aggregate of investors will behave, and how prices and returns at which markets will clear are
set: construction of general equilibrium models.
The CAPM describes relationships between the prices of assets at market equilibrium.

1 Equilibrium definition and first consequences

1.1 Assumptions

We consider the market on one period (single-period investment horizon) with the following as-
sumptions:
for investors:
· the investors have mean variance preferences
· homogeneous expectations: the investors make all the same forecasts for mean and variance of
returns.

on the financial market:

· N risky assets with same assumptions as in the previous chapter: no transactions costs, no taxes,
assets are divisible, the expected returns of the assets are not all equal and the covariance matrix
of the N assets’ returns, Σ, is invertible.

· Short selling is allowed.

· The market is at equilibrium, defined as:
- each investor holds an optimal portfolio (individual equilibrium)
- demand = supply: all existing assets are owned by someone, i.e. no excess demand or supply
(then observed price is an equilibrium price).

Then each investor holds an efficient portfolio and Chapter 1 results apply: the efficient frontier is
known (half-line if there exists a risk-free asset, else upper half of an hyperbola).

1.2 Market portfolio

Def: the Market portfolio is a portfolio containing every risky assets available to investors in amounts
proportional to their market values (i.e. xi = capitalisation of asset i

total market capitalisation , capitalisation=asset quantity
× asset price). We denote it by M .

Th: At market equilibrium, the Market portfolio is efficient.

Proof: Because all existing assets are owned by someone, the Market portfolio is a combination of
all investors portfolios.
All investors see the same efficient frontier and all choose an efficient portfolio.
Then the Market portfolio is a combination of efficient portfolios.
Thus it is efficient (from the separation theorem, OK in both cases: with or without a risk-free
asset).
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I.e. market equilibrium (demand = supply) allows us to identify a particular portfolio on the efficient
frontier.

1.3 Efficient frontier at equilibrium when there exists a risk-free asset

We assume that there exists a risk-free asset (a government bond is considered a risk-free invest-
ment). Then the market participants can borrow and lend money at the same risk-free rate of
interest r, with no limit.

In the (σ(·), E(·)) plane, the efficient frontier is a half-line: investors all choose a portfolio that is a
combination of the risk-free asset and of a common risky portfolio T (or A if r = a

c ).

Th: At equilibrium, r <
a

c
. The market portfolio coincides with the tangent portfolio: M = T

Proof: If r = a
c , all investors hold the combination of risky assets A and some risk-free asset.

Thus global demand of (i.e. wealth invested in) risky assets = 0, cannot give a market equilibrium
as soon as net supply of these assets is positive.

Then r 6= a
c . All investors hold a combination of the risk-free asset and of portfolio T . Then port-

folio T will be exactly the portfolio constituted of all risky assets, i.e. M (all existing assets are
owned by someone).
This implies r < a

c as M , then T , is efficient. Also, if we had r > a
c , all investors, shorting T, would

hold negative quantities (in value) of M . Inconsistent with market equilibrium. Then assets prices
will adjust s.t. r < a

c =
tERΣ−11
t1Σ−11

for the market to be at equilibrium.

So the efficient portfolios are the combinations of the risk-free asset and M .
Note that E(RM ) > r.

Conclusion: If investors all see the same efficient frontier and all choose an efficient portfolio, their
portfolios are all on the half straight line starting from the risk-free asset and crossing the Market
portfolio, with positive slope, called the Capital Market Line. The higher the risk, the higher the
expected return. Dominated portfolios are below this line (e.g. individual assets).

This CML is constituted of all portfolios X satisfying, with x (≥ 0) invested in portfolio M , 1− x

in risk-free asset:

(1− x)

(
0
r

)
+ x

(
σ(RM )
E(RM )

)
=

(
σ(RX)
E(RX)

)
. Thus EI (RX) = r +

E(RM )− r

σ(RM )
σ(RX)

equation of the efficient frontier, common to all investors

(in chapter 1, we found EI (RX) = r + fσ(RX) and σT = µT−r
f , ie as T = M , f = E(RM )−r

σ(RM ) , consistent).

Then the expected return of an efficient portfolio is the sum of r and EI (RX) − r which is an
additional income for bearing the risk (risk premium):

risk premium by risk unit =
E(RM )− r

σ(RM )
, denoted by ΠM .

(depends on the average risk aversion of all market participants)

= price of risk = slope of the CML
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= additional return required by investors
to bear an additional unit of risk (measured by the variance)
when investing in an efficient portfolio.

2 CAPM

The Capital Asset Pricing Model (CAPM), which was developed by Sharpe (1964), Lintner (1965),
and Mossin (1966), is one of the cornerstones of modern finance. The CAPM is founded on
Markowitz’s mean-variance framework and on the assumptions of homogeneous expectations and no
limitations on short-selling. Based on these (and other) assumptions, the CAPM derives a simple
linear relation between risk and return. Sharpe, Markowitz and Miller jointly received in 1990 the
Nobel Prize in Economics for this contribution to the field of financial economics.
Black (1972) formulated the ”Zero-beta Capital Asset Pricing Model”, which is the CAPM when
there exists no risk-free asset (our first case below).

2.1 Zero-beta Capital Asset Pricing Model (no risk-free asset)

The market portfolio does not coincide with GMV (M=GMV is possible only if all investors choose
that portfolio, it can be shown that that implies that all assets have the same expected return, and
that is excluded here).

Th: At market equilibrium, there is a linear relationship between expected returns of the assets.
Indeed, the expected return of any asset i is determined by:

EI (Ri) = E(RM⊥)+ βi[E(RM )−E(RM⊥)] with βi =
Cov(Ri, RM )

V (RM )
and EI (RM )−E(RM⊥) > 0.

RM⊥ is the return of a portfolio having a 0 covariance with the market portfolio.

Proof: direct consequence of Roll theorem: M is efficient (at market equilibrium) 6= GMV, then
there exists a portfolio M⊥ non-correlated with M such that:
∀i, E(Ri) = E(RM⊥) + E(RM )−E(R

M⊥ )

V (RM ) Cov(Ri, RM ) and EI (RM )− E(RM⊥) > 0.

βi =
Cov(Ri, RM )

V (RM )
is called the beta of the asset.

βi is proportional to Cov(Ri, RM ), which measures the marginal contribution of asset i to the total
risk of the market portfolio (cf end of 2.2 p5).

We have βM = 1 and βM⊥ = 0 (hence M⊥ is a zero-beta portfolio).

The CAPM says that at market equilibrium, the expected return of an asset =
expected return of a zero-beta portfolio + a premium
where premium = return premium of the market (EI (RM )− E(RM⊥))

× term proportional to the asset contribution to the total risk of the market portfolio.

The higher the beta, the higher the expected return at equilibrium.
The expected return of an asset depends on its covariance with the market portfolio.

We draw the expected return as a function of beta.
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At market equilibrium, all traded assets are on a line.
The line is called the Security Market Line.
It goes through the market portfolio (whose beta is 1),

intersection with ordinate axis =
expected return of the zero-beta portfolio.

An important assumption behind the Zero-Beta CAPM is that short-sales are possible. To obtain
zero-beta portfolios, we typically would have to short sell some assets. If there are short-sale con-
straints the Zero-Beta CAPM fails to hold.

2.2 CAPM when there is a risk-free asset

= more classical form of CAPM (Sharpe 1964, Lintner 1965, and Mossin 1968).

2.2.1 Formulation of CAPM, as a consequence of our previous results

Th: When there is a risk-free asset, at market equilibrium, the expected return of asset i

is given

by: EI (Ri) = r + βi[E(RM )− r] with βi =
Cov(Ri, RM )

V (RM )
, beta of the asset.

Proof: direct consequence of the last Roll theorem as M is efficient and is not the GMV portfolio
(as T 6= GMV ).

The result can be written EI (Ri)− r =
E(RM )− r

σ(RM )
βiσ(RM ) = πMβiσ(RM )

= risk premium of asset i = additional return required by investors to bear the risk.

At market equilibrium, the risk premium on an individual asset is proportional to its covariance with
the market portfolio (or to its beta, or to its contribution to the total risk of the market portfolio).

Expected return as a function of beta: Security Market Line.
Goes through the market portfolio,
intersection with y-axis = r.

At market equilibrium, all traded assets are on this SML line.

The higher the beta, the higher the expected return at equilibrium. beta=1 for the market.
Depending of βi value, the market risk is amplified or softened.

Same equation than the CML, but holds for any asset, not only efficient portfolios:

CML: for X efficient, EI (RX) = r + πMσ(RX) where πM = E(RM )−r
σ(RM ) , risk premium by unit of

risk.

SML: for any traded asset i, EI (Ri) = r + πMβiσ(RM ).

Then if asset i is efficient, i.e. on both lines, we get σ(Ri) = βiσ(RM ). We come back to this
later.
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2.2.2 2nd interpretation of CAPM: linear regression of the asset i return on the
market portfolio return

Looking at real data, a link can be observed between individual asset movements and whole market
movements: eg, when the whole market goes up, each particular asset tends to go up.

This influence can be studied on the past moves series for market/ asset, through a linear regression
of Ri on RM .

Reminder:
→ line through a cloud of N points (xt, yt)t, fitted using the least squares method:

Find (a, b) solving Min
N∑

t=1

[yt − (a + bxt)]2.

∂

∂a
= 0 iff (1)

∑
t

[yt − (a + bxt)] = 0
∂

∂b
= 0 iff (2)

∑
t

xt[yt − (a + bxt)] = 0

{
aN + b

∑
t xt =

∑
t yt

a
∑

t xt + b
∑

t x2
t =

∑
t xtyt

then b =

∣∣∣∣∣ N
∑

t yt∑
t xt

∑
t xtyt

∣∣∣∣∣∣∣∣∣∣ N
∑

t xt∑
t xt

∑
t x2

t

∣∣∣∣∣
=

N
∑

t

xtyt −
∑

t

xt

∑
t

yt

N
∑

t

x2
t − (

∑
t

xt)2

Note that the residual terms (εt) defined by yt = a + bxt + εt

satisfy from equation (1):
∑

t εt = 0 and from equation (2):
∑

t xtεt = 0.
This justifies the assumptions chosen in the linear regression below.

The smaller
∑

t ε2
t the better the line explains the set of data points.

→ linear regression of a variable Y on another variable X:

Assumption: Y = a + bX + ε, where ε is an error term s.t. EI (ε) = Cov(ε, X) = 0.

Cov(Y − (a + bX), X) = 0 implies Cov(Y, X) = b Cov(X, X)

then b =
Cov(X, Y )

V (X)
, while a is obtained as a = EI (Y ) − bEI (X) (called the y-intercept or

intercept).

Note that as Cov(ε, X) = 0, we have V (Y ) = V (a + bX) + V (ε).
The regression is satisfying when V (ε) is small compared to V (a + bX), i.e. when V (a+bX)

V (Y ) is
close to 1. The quality of the regression is then measured by the coefficient of determination:

R2 =
V (a + bX)

V (Y )
=

b2V (X)
V (Y )

=
Cov(X, Y )2V (X)

V (X)2V (Y )
= Corr(X, Y )2.

R2 measures the quality of the approximation by the line, i.e. how precisely Y values are
explained by X values.

On observed data:
b is estimated by the empirical values of

Cov(X, Y )
V (X)

(consistent with our first computation).

We apply this to X = RM and Y = Ri, assuming Ri = a + bRM + ε, with additional properties for
ε. The coefficient b is then obtained as:

b =
Cov(RM , Ri)

V (RM )
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which is what we obtained for βi. The beta you get from Sharpe’s derivation of equilibrium prices
(CAPM) is essentially the same beta you obtain from doing a least-squares regression of the return
of asset i on the return of the market portfolio.

But in the first approach we have assumptions of equilibrium, RM and Ri are supposed to be future
returns on the next period..., while the second approach is the result of a simple regression and past
data are used.

In both cases, the beta will be estimated on past data, assuming that the distribution of (RM , Ri)
is stable over time (including their link of course).

The regression line of Ri on RM is called the characteristic line of asset i. αi is the intercept.
Equation: Ri = αi + βiRM (represents the relationship between the market return and the asset
return, computed on past data, each series assumed to be observations of a same variable).

Example of characteristic line: fund NFMAX compared to Russell 3000 (good proxy of the U.S.
market portfolio as large index representing 98% of the U.S. capitalisation), the weekly returns
between May 2005 and July 2009 are used.
The resulting line is Ri = 0.05% + 126% RM i.e. β = 1.26.

Comparing the two approaches:
Ri = αi + βiRM + εi ⇒ EI (Ri) = αi + βiE(RM ), to compare to EI (Ri) = r + βi[E(RM )− r].

αi should be equal to r(1−βi) if the returns distributions are stationary and the series used for the
regression is long enough.

On real data: if for example αi > r(1 − βi), that means that during regression period, stock did
better than expected.
The difference between αi and r(1− βi) is called Jensen’s alpha and provides a measure of whether
the investment in question earned a return greater than or less than its required return, given both
market performance and risk (see also Chapter III).

For instance, a firm that earned 15% during a period, when firms with similar betas earned 12%,
will have earned an excess return of 3%; its intercept will also exceed r(1− βi) by 3%.

A statistic usually computed is the standard error of the beta estimate. The slope of the re-
gression, like any statistical estimate, may be different from the true value; and the standard error
reveals just how much error there could be in the estimate. The standard error can also be used to
arrive at confidence intervals for the true beta value from the slope estimate.

2.2.3 Usual model: ”Market model”

also known as Single-Index or Diagonal model (Sharpe, 1963)
= empirical version of the CAPM.

Market model assumptions:
- for each asset: Ri = αi + βiRM + εi, with EI (εi) = 0, Cov(RM , εi) = 0.
- the (εi) are all independent (uncorrelated is sufficient).

The investors have mean variance preferences (they will choose their portfolios according to the
expected return and the return variance).
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That is, asset moves depend on: the whole market moves (term βiRM )
+ εi: some randomness due to characteristics proper to the asset (examples of factors specific to
the asset: specific announcements such as better-than-expected results for the company, launch of a
new product, expected acquisition by another company; or bad news: results worse than expected,
social conflicts in the company, new product introduced by a competitor...), independent of the
other assets’ specific factors (not always satisfied for equities of a same sector, or subsidiaries of a
same company...).

Key assumption: correlations across the asset returns only come from the joint effect of the market
components of returns. The εi are uncorrelated, i.e. there are no effects beyond the market (e.g.
industry effects, sector effects, style effects, size effects...) that accounts for the co-movements be-
tween security returns.

When the market moves by 1%, the asset moves on average by β%.

β < 1 (β > 1) means that the return of an equity or a sector softens (amplifies) the return of the
stock market, either downwards or upwards.

Ex: Air Liquide (industrial gases): slope = 0.83, softens the whole market variations.
Carrefour: R2 = 0.43 i.e. 43 % of variations (precisely, return variance) explained by the market
returns, 57 % by characteristics proper to the equity.
Note that if R2 is small, the determination of the regression line is less robust (measure of beta less
precise, more sensitive to a given point).
On the main financial markets, on average 40 % of variations are explained by the market returns.

Diversifiable risk and systematic risk

The risk is measured by the variance. The total variance of asset i return is:
V (Ri) = β2

i V (RM ) + V (εi).

1st term represents the part of the total variance of asset i return which is explained by the variance
of the market portfolio (factor RM common to all assets, softened or amplified by beta).

2nd term = part of the total variance of asset i return which comes from proper characteristics of
the asset.

Note that while the statistical explanation of the R2 is that it provides a measure of the goodness
of fit of the regression, the economic rationale is that it provides an estimate of the proportion of
the risk of a stock that can be attributed to market risk (as R2 = β2

i V (RM )
V (Ri)

); the balance (1 − R2)
can then be attributed to firm-specific risk.

For a portfolio X: RX =
∑N

i=1 xiRi then βX =
Cov(RX , RM )

V (RM )
=
∑N

i=1 xiCov(Ri, RM )
V (RM )

=
N∑

i=1

xiβi.

The beta of a portfolio is equal to the weighted average of the betas (linearity of the beta).

RX =
∑N

i=1 xiαi + βXRM +
∑N

i=1 xiεi thus V (RX) = β2
XV (RM ) +

∑N
i=1 x2

i V (εi)

If we put 1
N in each asset, V (RX) = β2

XV (RM ) +
∑N

i=1
1

N2 V (εi).

For N large, the 2nd term tends to 0 = diversification.

The part of a stock’s risk that can be eliminated is called diversifiable risk (or specific risk), while
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the part that cannot be eliminated is called systematic (= market risk).

V (εi) = non systematic risk or idiosyncratic risk (= specific company risk that can be eliminated
through diversification).

For a given asset, from knowing only beta, we know the non-diversifiable risk (and consequently the
contribution of the asset to the risk of the portfolio).

On main markets, from N = 15 assets,
95 % of the specific risk can be eliminated.

Our 1st version of this property (Markowitz) was using the covariance matrix.
Here (2nd version, from Sharpe), we use the market model which is a simplification (see below).

An efficient portfolio X is a combination of the risk-free asset and M , then RX = (1− x)r + xRM

with x = proportion of wealth invested in portfolio M . Then ε = 0 (no idiosyncratic risk),
Cov(RX , RM ) = xV (RM ) thus βX = x, σ(RX) = βXσ(RM ), and Corr(RX , RM ) = 1.

Conclusion: Any efficient portfolio is perfectly diversified; its risk reduces to the systematic risk.

For a well-diversified portfolio, V (ε) is close to 0, R2, or Corr(RM , RX), is close to 1.

In this model, the covariance matrix can be obtained simply from the betas:
we have, from the assumptions on the model, for any i 6= j, Cov(Ri, Rj) = βiβjV (RM ).

It is then much simpler in terms of amount of required input data:
N specific asset’s returns components αi, N betas, N residual risks σ(εi), EI (RM ) and V (RM ),

and in terms of computations. In particular Σ−1 can be explicitly computed through the following
closed formula (see exercise 19):

Σ−1 = D−1 − V (RM )
1 + V (RM )2 tβD−1β

D−1β tβD−1 with β =


β1

...

βN

 and D = diag(V (ε1), ..., V (εN )).

Note that to invest in M would mean buying some of each asset, and would have a cost (transaction
cost). A proxy portfolio is then used. Economic activity corresponds roughly to 15 sectors.
Take one representative asset in each sector (proportion = total capitalisation of the sector).
For CAC40, 20 assets explain most of the diversification.
Some constraints can be introduced, e.g. limits on the xi (e.g.: none above 15%...).

2.2.4 CONCLUSION OF CAPM

The CAPM gives a relationship between expected return and non-diversifiable risk for
any traded asset i:

EI (Ri)− r = ΠMβiσ(RM), while its risk is measured by V (Ri) = β2
i V (RM) + V (εi).

The expected premium on an asset depends on its systematic risk, βiσ(RM ), not on its total risk.

The investor gets compensated for the systematic risk, not for the diversifiable risk.

ε increases the risk without increasing the expected return.
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- To bear a risk, investors require an additional return (compensation for the risk).

- in asset total risk, only non-diversifiable (systematic) risk matters, measured by the beta. The
non-diversifiable risk is considered as a drawback (disadvantage), not the specific risk (can be elim-
inated). The market does not reward investors for bearing diversifiable risk.

- for efficient portfolios, both are equal i.e. total risk is non-diversifiable.

- then the asset’s return can be written as r + a risk premium. This risk premium is beta × the
risk premium provided by the market (EI (RM ) − r). Otherwise stated, at equilibrium, asset risk
premium is proportional to ΠM , the average risk aversion of the investors.

- in this model, the expected return of any asset depends only on the beta of this asset.

- this relation risk / expected return holds only for traded assets (it says that any security or port-
folio is on the Security Market Line) and results from the market equilibrium: the prices adjust
until this relation holds.

For a given asset, if the risk increases (but the average anticipated future value is unchanged), the
investors will not accept paying the same price for the asset. Its price goes down, thus its expected
return increases. ⇒ the relation is about expected return, but it determines the price today (thus
CAPM is a ”pricing model”).

2.3 CAPM use

Expectation and variance of the returns are estimated from the past, assuming that the probability
distribution of the returns is stationary when time passes. Same for the betas: to estimate the beta
for the next period, past data are used, thus beta needs to be stable.

Beta estimation

Several companies provide betas estimates: Merrill Lynch, S&P, Morningstar, Bloomberg...) and
usually do not reveal their estimation procedure (Bloomberg does).

Data choice: Using a different time period for the regression or different return intervals for the
same period can result in a different beta.

? Frequency: weekly, monthly...? Daily is less reliable in particular if trading volumes are low.
Betas will be higher for a longer frequency. Generally weekly returns are used.

? Length of the series? Most of the providers use 5-year periods for the estimation (Bloomberg uses
2-year).

? Choice of the reference index: a proxy portfolio is used for computing the market portfolio returns,
generally the index of the market in which the stock trades, but for a foreign investor, international
indices can be used. Note that while the S&P 500 and the NYSE Composite (representing all
common stock listed on the NYSE, including foreign companies) are the most widely used indices
for U.S. stocks, they are, at best, imperfect proxies for the market portfolio in the CAPM, which is
supposed to include all assets. The S&P 500 represents 80% of the U.S. capitalisation.

? Frequency of the update for the estimates.

? Dividends included or not... The difference can be high for companies paying dividends not in
line with the market average (no dividends or high ones).



Q.E.M., M.M.E.F. Portfolio theory and asset pricing Preliminary version 32

Additionally, most providers adjust the beta obtained from the usual regression. Bloomberg per-
forms a regression on the S&P500 (for US stocks) using weekly returns over a 2-year period and
reports an adjusted beta = 2

3× usual beta + 1
3 × 1 (average with the market beta, assuming that a

security’s beta moves toward the market average over time, i.e. mean reversion, for beta estimated
on successive periods). The idea is to obtain an estimate of the security’s future beta.

Example: Estimating a Regression Beta for Boeing (source: Aswath Damodaran Investment
Valuation-Tools and Techniques for Determining the Value of any Asset)

The stock Boeing is traded on the NYSE. We take its monthly returns from January 1996 to De-
cember 2000, including both dividends and price appreciation, for the stock and for the market.
The slope of the regression is 0.56. This is Boeing’s beta, based on monthly returns from 1996 to
2000 (would be 0.57 if dividends were not taken into account, like Bloomberg does).

Intercept of the regression = 0.54%. This is a measure of Boeing’s performance, when it is com-
pared with r(1 − β). For r, we take the average monthly risk-free rate (since the returns used in
the regression are monthly returns) between 1996 and 2000, we get 0.4%.
So the Jensens alpha is 0.54− 0.4(1− 0.56) = 0.36%.
This analysis suggests that Boeing performed 0.36% better than expected, when expectations are
based on the CAPM and on a monthly basis between January 1996 and December 2000. This
results in an annualised excess return of approximately (1 + 0.0036)12 − 1 = 4.41%.

R2 of the regression = 9.43%. This statistic suggests that 9.43% of the risk (variance) in Boeing
comes from market sources and that the balance of 90.57% of the risk comes from firm-specific com-
ponents. The latter risk should be diversifiable and therefore will not be rewarded with a higher
expected return. Boeings R2 is higher than the median R2 of companies listed on the New York
Stock Exchange, which was approximately 19% in 2000.

Empirical results: For 2nd approach: CAPM works fine on long periods (i.e. there exists in-
deed a linear relationship between actual returns and betas), but better for portfolios than for
single securities. The betas are more stable for portfolios with a large number of securities than for
single securities (ex: JP Morgan between Oct 2015 and Oct 2017 fluctuates between 0.5 and 2).

The ”CAPM 1st approach” empirical validation is more complex. First question: is the market
portfolio efficient? Also the model assumes that investors make all the same forecasts for mean and
variance of returns. In reality, it is considered that views discrepancies generate most transactions
on the markets!

Negative or low beta? There are few fundamental investments with consistent and significant
negative betas, but some derivatives like equity put options can have large negative betas.
Also: an inverse exchange-traded fund or a short position.
A negative beta might occur even when both the benchmark index and the stock under consideration have

positive returns. It is possible that lower positive returns of the index coincide with higher positive returns

of the stock, or vice versa. The slope of the regression line in such a case will be negative.

Utility stocks commonly show up as examples of low beta. These have some similarity to bonds,
in that they tend to pay consistent dividends, and their prospects are not strongly dependent on
economic cycles. They are still stocks, so the market price will be affected by overall stock market
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trends, even if this does not make sense.

Gold as zero-beta? In their first study, McCown and Zimmerman use the CAPM. Running a regression

analysis from 1970 to 2003 where the risk free rate is the yield on the US T-Bill, they use three different

proxies for the market portfolio: MSCI US Index, MSCI World denominated in local currency, and MSCI

World denominated in US dollar (MSCI, formerly Morgan Stanley Capital International, is a provider of

equity, fixed income, hedge fund stock market indexes, some of them calculated since 1969).

Acknowledging that the CAPM is ”limited in usefulness as a tool for investment analysis,” the authors ob-

serve that ”all of the estimated beta coefficients for gold are statistically indifferent from zero,” and therefore

gold does not reflect ”much, if any, systematic risk”. In this study their conclusion is that gold effectively

behaves as a zero-beta asset, yet it also ”has a positive risk premium”.

Next, McCown and Zimmerman evaluate the investment potential of gold using the Arbitrage pricing theory

(APT) of Ross (1976). APT looks at an asset’s exposure to multiple sources of risk simultaneously, see

below. The study considered various types of market risk including the MSCI World Index denominated in

US dollar; bond default spread; bond term spread; change in US industrial production; and change in the

log US CPI inflation rate. Regressions were run both with and without the market risk factor.

The result of this analysis shows that gold has positive, statistically significant coefficients on industrial pro-

duction factors and change in inflation risk factors. As to market risk, for the quarterly and monthly data

”the R-squares for gold are all close to zero”. McCown and Zimmerman conclude that gold is a good hedge

against inflation and a useful addition to portfolios based on APT as a framework.

3 An extension to the mean-variance portfolio analysis: Black-

Litterman

Tries to remedy to below limits of the Markowitz optimisation:
- complete set of expected returns is required
- highly-concentrated portfolios obtained (extreme portfolios)
- input-sensitivity (mean-variance portfolios are unstable and often ”error maximizers”)
- no way to incorporate investor’s views.

Bayesian approach to combine the subjective views on expected returns with the market equilibrium
vector of expected returns (the prior distribution).
To form a new mixed estimate of expected returns (the posterior distribution).
In addition to the return expectations, the investor must specify the degree of confidence he puts
onto the stated views.

4 Multiple-factor models, APT

In the CAPM, the expected return of any security can be explained by the market return, which
is the only factor. The beta is indeed the measure of the sensitivity of a security’s return to the
market return. The relation between the risk premium and the beta is linear.
The CAPM relies on restrictive assumptions about agents’ preferences or security returns, and its
empirical implications have not been confirmed by data.

Moreover more than one factor is needed to explain asset returns. Other models have been developed
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with factors replacing the market return, in particular the Arbitrage Pricing Theory (APT) (Roll-
Ross, 70-80s). See for example Copeland and Weston, chap. 7.

The APT relies on the following assumptions:
1. Asset returns are generated according to a linear factor model.
2. This factor model is the same for all investors, i.e. they have homogenous expectations
(as for CAPM).
3. The number of assets is close to infinite (to be able to form arbitrage portfolios with close
to zero residual risk, see below).
4. The market is perfect (i.e. perfect competition, no transactions costs [same as CAPM])

Precisely: K risk factors f1, ..., ...fK , each factor normalised so as to have zero expectation. All the
K factors and the risk-free asset are linearly independent.
For a given asset i, the return is governed by factors common to all assets + 1 specific factor:

Ri = EI (Ri) +
K∑

k=1

bikFk + εi.

bik denotes the sensitivity of asset i return to factor k, Fk denotes the return of factor k with
E[Fk] = 0 (explains why first term is EI (Ri)), and εi denotes the residual return of asset i. It is the
specific risk of asset i which is not explained by the factors and satisfies: E[εi] = 0

The residuals are non correlated and non correlated with the factors: Cov[εi, εj ] = 0, Cov[εi, Fk] = 0.
Similar to the CAPM, the unique effects are independent and will be diversified away in a large
portfolio.

When there exists only one factor corresponding to the market return, this model is the CAPM.

Non-arbitrage conditions lead to the existence of factor risk premia (λk) such that:

EI (Ri)− r =
K∑

k=1

bikλk .

For 1 factor, we had EI (Ri)− r = βi[E(RM )− r] in the first approach.

This can be proved as well in the second approach by arbitrage arguments:

assume Ri = αi + βiF + εi, for i = 1, 2, with F centered, then E(Ri) = αi.

1. Assume first that εi = 0 for i = 1, 2 (no specific risk).

We build a portfolio X such that RX = xR1 + (1− x)R2. This portfolio is risk-free as soon as x is
such that xβ1 + (1− x)β2 = 0 (canceling the terms in F in RX).

Then its return can only be r, we get: xα1 + (1− x)α2 = r hence

x(α1− r) + (1− x)(α2− r) = 0. Multiplying by β2 and replacing (1− x)β2 by −xβ1, we obtain:

β2x(α1 − r) = xβ1(α2 − r) = 0 hence
β2

β2 − β1
(α1 − r) =

β2

β2 − β1
(α2 − r)

We get
α1 − r

β1
=

α2 − r

β2
thus

E(R1)− r

β1
=

E(R2)− r

β2
= Cte (risk-premium for the factor F ).

This result generalises into the case with several risky factors, leading to the relationship

EI (Ri)− r =
K∑

k=1

bikλk (exercise 20).
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2. We ignored the specific risk. One of the main arguments of APT is that with a ”large” number
of assets the specific risk of a well diversified portfolio is close to zero. To make the argument go
through we would need an infinite number of assets. If we have a finite number of assets the rela-
tionship above is only an approximate pricing rule. In fact, APT relies on the concept of asymptotic
arbitrage. Investors form arbitrage portfolios which contain idiosyncratic risk, then when we take
limits of these portfolios (as the number of assets go to infinity) they become free of residual risk
(as in above argument).

2 types of multi-factor models:

Exogenous models (macroeconomic and fundamental models). The common factors are predeter-
mined factors such as explicit macroeconomic variables as market return, gross domestic product
growth, long-short interest rate spread, credit spread, inflation rate, exchange rate,... , and microe-
conomic variables which are determined cross-sectionally from normalized fundamental attributes
(price earning ratios, earning yield, earning variability, currency sensitivity, dividend yield, book-
to-market ratio, size, industry, leverage, trading activity, momentum...).

Endogenous models (statistical models). The risk factors are extracted directly from the return
data by using statistical methods such as factor analysis, Principal Component Analysis (PCA)...
then a factor can be interpreted economically by identifying an economic variable with which it is
strongly correlated (not very satisfying though).

Numerous empirical studies are devoted to the determination of the macroeconomic or financial
factors. One problem is also to identify the number of factors.

Summary: Arbitrage pricing theory is a general theory of asset pricing that states that the fu-
ture return of a financial asset can be modeled as a linear function of various macro-economic
factors or theoretical market indices, where sensitivity to changes in each factor is represented by
a factor-specific beta coefficient. The model-derived rate of return will then be used to price the
asset correctly - the asset price should equal the expected end of period price discounted at the rate
implied by the model. If the price diverges, arbitrage should bring it back into line.

CAPM based on the conjecture of an equilibrium market.
APT based on the conjecture of the absence of arbitrage.

The APT offers an alternative to the CAPM. APT does not require assumptions about utility or
the distribution of security returns (but the risk is still measured by the return variance). Factor
models are often used in practice to reduce the dimensionality of the estimation problem in the
Markowitz approach, like it was already the case with the one factor CAPM (the matrix inversion
is simpler as well). K factors imply more computation than 1 factor, but still less than computing
the covariance of each possible pair of securities in the portfolio.

APT is a generalisation of CAPM (2nd approach), but CAPM remains one of the favorite tools of
practitioners, simple, and there exists already a well-established tradition of operating betas.

For example, the three-factor model of Fama and French (1993) takes account of the book-to-
market ratio (ratio of the book value of a firm to its market value; allows to identified under-valued
stocks) and the company’s size measured by its market capitalization:

Ri − r = αi + βi(RM − r) + bS
i SMB + bH

i HML + εi
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where SMB indicates small (cap) minus big. It denotes the difference between returns of the small-
capitalization stocks and large-capitalization returns.
The term HML is the high (book/price) minus low. It denotes the difference between returns on
portfolios with high book-to-market ratios and portfolios with low book-to-market ratios (or excess
returns of value stocks over growth stocks).

On a given example, the Fama and French three-factor model explains over 90% of the diversified
portfolios returns, compared with the average 70% given by the CAPM.

In 2015, Fama and French extended the model, adding a further two factors - profitability and in-
vestment. Defined analogously to the HML factor, the profitability factor (RMW) is the difference
between the returns of firms with robust (high) and weak (low) operating profitability; and the
investment factor (CMA) is the difference between the returns of firms that invest conservatively
and firms that invest aggressively.

Chen, Roll, Ross (86) have identified the following principal factors on the American equities market:
Growth rate in industrial production,
Expected inflation,
Unexpected inflation,
Changes in risk premiums,
Changes in the term structure (yield curve),
Return on the market portfolio.

Finally, note that while multi-factor models have been originally developed for simplifying the opti-
mization process, they nowadays are mainly used for hedging in the management of passive/active
portfolios (tracking portfolios, factor bets, performance and risk analyses).
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Chapter III Performance, dependence and risk measures

J.L. Prigent (2007)
Portfolio Optimization and Performance Analysis, Chapman & Hall,

P. Embrechts, A. McNeil,. D. Straumann (1999)
Correlation and Dependence in Risk Management: Properties and Pitfalls.

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D. (1999)
Coherent measures of risk. Math. Fin. 9(3).

1 Some performance measures

Three standard performance measures based on the Capital market line and the Security market
line. The higher these performance measures, the more interesting the portfolio.

1.1 Sharpe ratio

This measure is based on the Capital market line. For all efficient portfolios, we have the following
equality between (excess reward)/(total risk) ratios:

EI (RP )− r

σ(RP )
=

E(RM )− r

σ(RM )
.

The previous ratio is the slope of the capital market line. As proposed by Sharpe (1966), this can
be actually considered as a performance measure. It is equal to the excess mean return and the
measure ot total risk (the standard deviation), and is defined as the reward-to-variability ratio. For
example, the manager can check if the excess mean return of the portfolio is sufficient to compensate
a higher risk than the market portfolio. If the portfolio is well-diversified, its Sharpe ratio is close
to the market portfolio’s.

1.2 Treynor measure

The Treynor’s ratio (1966) is directly based on the CAPM:
EI (RP )− r

βP
. It can also be viewed as

a reward-to-risk ratio where the risk is the exposition to market risk. At equilibrium, this ratio
is constant and equal to EI (RM ) − r. The Treynor ratio allows us to evaluate the performance of
a well diversified portfolio, since it only involves the systematic risk. It can be used to examine
performance of portfolio which is only a part of the investor’s assets. Due to previous diversification,
the investor takes care only of the systematic risk.

1.3 Jensen’s alpha

This measure is also based on the CAPM, but mainly when it is not satisfied. Indeed, it is computed
as the difference αP between the mean return of portfolio P and the return explained by the CAPM,
r + βP (EI (RM )− r), i.e. the Jensens alpha is defined as:

αP = EI (RP )− r − βP (EI (RM )− r)

The manager searches for portfolios with αP > 0. For ex-post measures, the manager will be judged
skillful if the coefficient αP is significantly above 0.
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If αP = 0, the return of portfolio P is at equilibrium and the manager’s forecasts have not beat
the market performance: the portfolio has the same alpha as any combination of the risk-free asset
and the market portfolio. Unlike the Sharpe and Treynor ratios, the Jensen measure contains the
benchmark itself. As with the Treynor ratio, it only takes account of the systematic risk.

The CAPM states that the expected value of alpha is zero for all securities.

Due to the particular form of alpha, only portfolios with the same risk beta can be compared.
Otherwise, we can consider, for example, the Black-Treynor ratio:

αP

βP
.

1.4 Sortino ratio

Indicators based on standard deviations like the Sharpe ratio do not indicate whether the value is
above or below the mean.

Risk-adjusted measures based, for example, on semi-variance (defined as EI ({([RP−EI (RP )]+)2}) can
separate these two cases. Thus, they can better take account of asymmetrical return distributions.
This is the purpose of the Sortino ratio, introduced in Sortino and Price (1994).

It is defined similar to the Sharpe ratio, but with a minimum acceptable return (MAR) instead of
the risk-free return. Moreover, the standard deviation is replaced by the semi-standard deviation
of the return below the MAR:

EI (RP )−MAR√
EI {[(MAR−RP )+]2}

2 How to measure the dependence

2.1 Correlation

The most commonly used dependence measure is Pearson’s linear correlation coefficient (for pairs
of real-valued, non degenerate random variables X, Y with finite variances). The linear correlation
coefficient Corr(X, Y ) is good at characterizing linear relationships between X and Y :
|Corr(X, Y )| = 1 for perfectly deterministic linear relationship (Y = aX+b a.s. or P [Y = aX+b] =
1 for a ∈ IR 0, b ∈ IR), and in the case of independent random variables, Corr(X, Y ) = 0.
However, it does not measure the nonlinear relationships between X and Y well.

The correlation coefficient is strictly related to the slope parameter of a linear regression of the r.v.
Y on the r.v. X, and it measures only the co-dependence between the linear components of X and
Y . Indeed, we saw:

Corr(X, Y )2 =
V (Y )−mina,bV (Y − (a + bX))

V (Y )
.

The regression coefficients a, b are given by b =
Cov(X, Y )

V (X)
and a = EI (Y )− bEI (X).

For this (a, b),
V (Y )− V (a + bX)

V (Y )
=

V (ε)
V (Y )

(where ε is the residual Y − (a + bX)) is the relative

variation of V (Y ) by linear regression on X.

It is small when X and Y are very correlated (Corr(X, Y ) close to −1 or 1).

Correlation fulfills the linearity property Corr(αX + β, γY + δ) = sgn(αγ)Corr(X, Y ), when
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α, γ ∈ IR∗, β, δ ∈ IR. Correlation is thus invariant under positive affine transformations, i.e. strictly
increasing linear transformations.

The variance of any linear combination is fully determined by the pairwise covariances between the
components (we found V (X) = tXΣX).

+ naturalness as a measure of dependence in multivariate normal distributions and, more generally,
in multivariate spherical and elliptical distributions (see below).

2.2 Spherical and elliptical distributions

Reminder: A random vector X is a Gaussian vector (or has a Gaussian distribution) iff its charac-
teristic function has the form:

∀λ ∈ IR, EI (ei tλX) = ei tλµ− 1
2

tλΣλ

for some symmetric positive semi-definite n× n matrix Σ and some vector µ ∈ IRn.

Then µ is the mean vector of X i.e. tµ = (EI (X1), ...,EI (Xn)) and Σ is the covariance matrix of X i.e.
Cov(Xj , Xk) = EI [(Xj − µj)(Xk − µk)] = Σjk. Thus, a Gaussian vector is completely characterized
by its mean vector and covariance matrix. Its component are independent iff its covariance matrix
is diagonal.

Th: If X is a Gaussian vector with mean µ, there exists independent Gaussian variables (Y1, ..., Yn),
centered, and an orthogonal matrix A s.t. X = AY + µ.
Reminder: a matrix A is orthogonal iff it satisfies AtA = tAA = I, i.e. its columns and rows are
orthonormal vectors.

Proof: Σ is a symmetric matrix hence it is diagonalisable by an orthogonal matrix:
There exists A orthogonal and Λ diagonal such that Σ = AΛ tA. Note that tAΣA = Λ.
As Σ is semi-positive, the coefficients of Λ are non negative.
Let Y = tA(X−µ). It is a centered vector (each element is the linear combinaison of some centered
variables). We have for any λ ∈ IR,

EI (ei tλY ) = EI (ei tλ tA(X−µ)) = e−i t(Aλ)µ)EI (ei t(Aλ)X) = e−
1
2

tλ tAΣAλ = e−
1
2

tλΛλ.
Then Y is a Gaussian vector with a covariance matrix equal to Λ.

The distribution of a Gaussian vector X has a density iff Σ is positive definite, then, the den-
sity is:

∀(x1, ..., xn) ∈ IRn, fX(x1, ..., xn) =
1√

(2π)ndetΣ
e−

1
2

t(x−µ)Σ(x−µ)

A sphere in dimension n is a set of vectors X such that
n∑

i=1

xi = R2 i.e. tXX = R2.

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional
scalings, or more generally, of an affine transformation. An arbitrarily oriented ellipsoid, centered
at µ, is defined by the solutions X to the equation ( tX − µ)Σ (X − µ) = 1, where Σ is a positive
definite matrix and X, µ are vectors. Ellipsoids are transforms of spheres by maps X 7→ AX + µ.
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The spherical distributions extend the standard multivariate normal distribution N (0, I), i.e. the
distribution of independent standard normal variables. They provide a family of symmetric distri-
butions for uncorrelated random vectors with mean zero.

Def: A random vector X = t(X1, ..., Xn) has a spherical distribution if for every orthogonal matrix
n× n A, AX and X have same distribution.

Such distributions have characteristic functions with a particularly simple form:
EI [ei tλX ] = Φ( tλλ) = Φ(λ2

1 + ... + λ2
n).

The function Φ is called the characteristic generator of the spherical distribution.

If X has a density (probability density function, or pdf) f(x) = f(x1, ..., xn) then this is equivalent
to f(x) = g( txx) = g(x2

1 + ... + x2
n) for some function g : IR+ ←− IR+, so that the spherical distri-

butions are best interpreted as those distributions whose density is constant on spheres.

Note that these are the distributions of uncorrelated random variables but, contrary to the normal
case, not the distributions of independent random variables. In the class of spherical distributions
the multivariate normal is the only distribution of independent random variables (see Symmetric
multivariate and related distributions. Fang, Kotz, Ng, Chapman and Hall,1987).

Elliptical distributions are the affine maps of spherical distributions in IRn, i.e. AX + µ for X

having a spherical distribution, and with A ∈ IRn×n, µ ∈ IRn.

Such distributions have for characteristic functions:

∀λ ∈ IRn, EI [ei tλ(AX+µ)] = ei tλµeit(tAλ)X = ei tλµΦ(tλA tAλ)) = ei tλµΦ(tλΣλ), where Σ = A tA.

Denoted by X ∼ En(µ,Σ,Φ). Again, Φ is called the characteristic generator of the distribution.

For example, multivariate Gaussian distribution Nn(µ,Σ, ) = En(µ,Σ,Φ) with Φ(λ) = e−
λ2

2 , mul-
tivariate Student and logistic distributions...

If X has a density f(x) = g(txx) = g(x2
1 + ...+x2

n) and if A is invertible (then Σ is positive definite),

AY + µ has density h(x) =
1√

det(Σ)
g(t(x− µ)Σ−1(x− µ)).

Elliptical distributions are those distributions whose density is constant on ellipsoids.

Many of the properties of the multivariate normal distribution are shared by the elliptical dis-
tributions. Linear combinations, marginal distributions and conditional distributions of elliptical
random variables can largely be determined by linear algebra using knowledge of covariance matrix,
mean and generator:

- any linear combination of an elliptically distributed random vector is also elliptical with the same
characteristic generator Φ.
Proof: If X ∼ En(µ,Σ,Φ) and B ∈ IRm×n, b ∈ IRm, then BX + b ∼ Em(Bµ + b, BΣ tB,Φ).

- the marginal distributions of elliptical distributions are also elliptical with the same generator.
Proof: compute the characteristic function at λ = (0, ..., 0, λk, 0, ..., 0).

2.3 Shortcomings of correlation

But the correlation is not sufficient to describe the dependence for most financial returns and has
several drawbacks. For example:
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- The variances of X and Y must be finite else the linear correlation is not defined.

- Zero correlation does not in general imply independence.

- While correlation is invariant under strictly increasing linear transformations, it is not invariant
by nonlinear such transformations, i.e. we generally have Corr(T (X), T (Y )) 6= Corr(X, Y ) for
T : IR→ IR nonlinear strictly increasing transformation.
Note that for bivariate normally-distributed vectors, one can show that for arbitrary transforma-
tions T : IR→ IR, |Corr(T (X), T (Y ))| ≤ |Corr(X, Y )|).

Fallacy 1. Marginal distributions and correlation do not determine the joint distribution.
The distribution of (X, Y ) is not uniquely determined by FX , FY and Corr(X, Y )!
This is true if we restrict our attention to the multivariate normal distribution or the elliptical
distributions. For example, if we know that (X, Y ) have a bivariate normal distribution, then the
expectations and variances of X and Y and their correlation uniquely determine the joint distri-
bution. However, if we only know the marginal distributions of X and Y and the correlation then
there are many possible bivariate distributions for (X, Y ).

The class of r.v. for which linear correlation can be used as a dependence measure is the class
of elliptical distributions. In particular, the mean-variance (Markowitz) approach is suited to (and
only to) the case of elliptical distributions like normal or t-Student distributions with finite vari-
ances.

Attainable correlation

Fallacy 2. Given marginal distributions FX and FY for X and Y , when changing their joint dis-
tribution, all linear correlations between −1 and 1 cannot be attained.

Linear correlation attains the bounds ±1 only if X and Y are non-trivial affine transformations of
one another, i.e.: r(X, Y ) = 1⇐⇒ Y = a + bX, b > 0

r(X, Y ) = −1⇐⇒ Y = a + bX, b < 0.

Th (admitted): For any variables (X, Y ) with given marginal laws such that 0 < V (X), V (Y ) < +∞,
the possible values for the correlation Corr(X, Y ) is a closed interval [ρmin, ρmax] containing 0.
|ρmin| and |ρmax| may be dramatically smaller than 1:

ρmin ≤ Corr(X, Y ) ≤ ρmax, with ρmin < 0 < ρmax.

Proof: uses let FX and FY marginal distributions of X and Y , then Cov(X, Y ) =

∫ ∫
[F (x, y)−FX(x)FY (y)]dxdy (Hoeffding)

and Fréchet bounds for copula: max(x1 + + xn + 1− n, 0) ≤ C(x1, ..., xn) ≤ min{x1, ..., xn}.

Comonotonicity and countermonotonicity
The random variables X1, ..., Xn are said to be comonotonic if (X1, ..., Xn) = (h1(Z), ..., hn(Z)) in
distribution, where Z is some random variable, and h1, ..., hn are increasing functions. ˇ

The random variables X1, X2 are said to be countermonotonic if (X1, X2) = (h1(Z), h2(Z)) in dis-
tribution, where Z is some random variable, and h1 and h2 are respectively an increasing and a
decreasing function, or vice versa.

Let X and Y be two random variables with strictly positive and finite variances, and let ρmin
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and ρmax denote the minimum and maximum possible correlation coefficient between X and Y .
Then, it can be shown that:

Th (admitted): Corr(X, Y ) = ρmin if and only if X and Y are countermonotonic;
Corr(X, Y ) = ρmax if and only if X and Y are comonotonic. ˇ

Example of [ρmin, ρmax] dramatically different of [−1, 1]: attainable correlation for lognormal ran-
dom variables X and Y s.t. lnX ∼ N (0, 1) and ln Y ∼ N (0, σ2).

We take X and Y comonotonic to obtain ρmax, see exercise 22.

lim
σ→−∞

ρmin = lim
σ→+∞

ρmax = 0, so the possible correlations between 2 lognormal variables s.t.

lnX ∼ N (0, 1) and ln Y ∼ N (0, σ2) are very limited for σ large.

The linear correlation coefficient can be almost zero, even if X and Y are comonotonic or counter-
monotonic!

2.4 Copula

Let X be a random variable with cumulative distribution function (cdf) FX .
A cdf takes values in [0, 1], it is always increasing and continuous from the right but it can be
constant on some intervals or have jumps, then it is not always invertible.

The generalised inverse distribution function is defined by:
for p ∈ [0, 1], F−1

X (p) = inf{x|FX(x) ≥ p} (also called the quantile function).

Prop: 1. For any r.v. U ∼ U(0, 1) (uniformly distributed on [0, 1]), F−1
X (U) has same law as X.

(note that this gives a simple method for simulating random variates with cdf FX .)

2. If FX is continuous, then FX(X) ∼ U(0, 1).

Proof: For sake of simplicity, we assume that FX is continuous (i.e. X is a continuous random
variable), i.e. P (X = x) = 0 for all x ∈ IR, and strictly increasing, then F−1

X is just its inverse
function. Both results are straightforward in that case:

1. let x ∈ IR, P (F−1
X (U) ≤ x) = P (U ≤ FX(x)) = FX(x) (as FX is increasing).

2. let p ∈]0, 1[, P (FX(X) ≤ p) = P (X ≤ F−1
X (p)) = FX(F−1

X (p)) = p.

We consider now n real-valued random variables. In fact, to describe completely the dependence
between the real-valued random variables X1, ..., Xn their joint cumulative distribution function
should be used: F (x1, ..., xn) = P [X1 ≤ x1, ..., Xn ≤ xn].

The idea of separating F into a part which describes the dependence structure and parts
which describe the marginal behaviour only, has led to the concept of copula.

For simplicity we assume that each Xi has a continuous marginal cdf Fi, then Fi(Xi) ∼
U(0, 1).

The joint cdf C of t(F1(X1), ..., Fn(Xn)) is then called the copula of the random vector
t(X1, ..., Xn). We have, for all (x1, ..., xn) ∈ IRn:

F (x1, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn) = P (F1(X1) ≤ F1(x1), ..., Fn(Xn) ≤ Fn(xn))
= C(F1(x1), ..., Fn(xn)).
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C corresponds to the dependence structure of X1, ..., Xn.

This representation allows to take into account the problems connected with dependent extreme
events that cannot be characterized via linear correlation, which is very important in finance.

Examples: for independent variables, C(x1, ..., xn) = x1 · ... · xn.

One attractive feature of the copula representation of dependence is that it is invariant under
increasing and continuous transformations of the marginals.

Th: If t(X1, ..., Xn) has copula C and T1, ...., Tn are increasing continuous functions, then
t(T1(X1), ..., Tn(Xn)) also has copula C.

Proof. Let t(U1, ..., Un) have distribution function C (in the case of continuous marginals FXi take
Ui = FXi(Xi)). We have:

C(FT1(X1)(x1), ..., FTn(Xn)(xn)) = P (U1 ≤ FT1(X1)(x1), ..., Un ≤ FTn(Xn)(xn)]

= P (F−1
T1(X1)(U1) ≤ x1, ...., F

−1
Tn(Xn)(Un) ≤ xn) = P (T1 ◦ F−1

X1
(U1) ≤ x1, ..., Tn ◦ F−1

Xn
(Un) ≤ xn)

= P (T1(X1) ≤ x1, ..., Tn(Xn) ≤ xn).

Note that for 2 r.v.:
- comonotonicity corresponds to the upper bound possible for any copula (perfect positive de-

pendence), which is the cdf of the random vectors t(U,U) where U ∼ U(0, 1).
- countermonotonicity corresponds to the lower bound possible for any copula (perfect negative

dependence), which is the cdf of the random vectors t(U, 1− U).

Indeed:

Equivalent condition for n comonotonic variables: their copula is the Fréchet upper bound
M(u1, ..., un) = min(u1, ..., un), which is the strongest type of ”positive” dependence. ˇ

Equivalent condition for 2 countermonotonic variables: their copula is the Fréchet lower bound
W (u1, u2) = max(0, u1 + u2 − 1), which is the strongest type of ”negative” dependence in the
bivariate case. Countermonotonocity doesn’t generalize to higher dimensions.

3 Risk measures

3.1 Classical examples beyond variance (or volatility)

Non symmetric distributions in finance may encourage the use of semi-variance, but not really
satisfying (main desirable properties for a risk measure missing).

3.1.1 Value-at-risk (VaR)

Concept introduced to answer the following question: how much one can expect to lose in one day,
week, year... with a given probability. What is the percentage of the investment that is at risk?
What is the minimum loss incurred in the α% worst cases of our portfolio?

X = random variable describing the future value of the P&L of a portfolio (or its return) on some
given time horizon T from today.
The value-at-risk at level α, V aRα, is defined by P (X ≤ −V aRα) = 1− α.
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For α = 95%, we are looking at the 5% worst losses.

Let FX is the cumulative distribution function of X, then V aRα = −F−1
X (1−α). V aRα is then the

”(1− α)-quantile” of the loss distribution.

At a firm level, we can think of the VaR as the amount of extra-capital that a firm needs in order
to reduce the probability of going bankrupt to α. This amount should be kept negative.

Note that the definition has to be more precise if FX is not invertible:
V aRα is defined as = inf{x|P [X ≤ x] > 1− α}.

Use imposed in regulation of financial institutions. In particular the major principles of the 2001
proposal of the Basel Banking Supervisory Committee are:

- VaR is assumed as risk measure,
- the risk of each loan must be portfolio invariant, i. e. must be measured by its own characteristic

only, not taking into account those of portfolio in which the loan is,
- the regulatory capital for a loan must be correlated to its marginal contribution to VaR.

Computation methods:
- historical (empirical quantile),
- Parametric (based on distributional assumptions),

for example normal VaR is built under assumption of normality of returns),
for Risk metrics VaR (a standard for practitioners), an exponential moving-average is used to
forecast the volatility, and to compute the quantile assuming a Gaussian distribution.

- the Monte Carlo method estimates VaR by simulating random scenarios and revaluing portfolio
positions.

The use of VaR has been generalized, VaR is the most widely used instrument to control risk, but
it has several drawbacks:

VaR does not measure loss exceeding VaR;
it may provide conflicting results at different confidence levels;
VaR has many local extremes leading to unstable VaR ranking.

We will see below that some good properties for a risk measure are missing, namely sub-additivity
and convexity.

3.1.2 Expected shortfall

Risk measure that is more sensitive than VaR to the shape of the loss distribution in the tail of the
distribution.
The expected shortfall measures the expected losses exceeding VaR:

ESα = −EI [X|X < −V aRα] ”expected shortfall at α% level”
= expected return on the portfolio in the worst α% of the cases.

Close concepts: conditional value at risk (CVaR) and expected tail loss (ETL). All match when the
cumulative distribution function of the variable is continuous.
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3.1.3 The maximum drawdown

The drawdown is the measure of the decline from a historical peak in some price process (Xt)
(typically the Net Asset Value of a financial trading strategy or of a fund).

With X0 = 0, the drawdown at time T is computed as

[
max

t∈(0,T )
Xt −XT

]+

The maximum drawdown up to time T is the maximum of the Drawdown over the history of the
variable:

MDD(T ) = max
τ∈(0,T )

[
max

t∈(0,τ)
Xt −Xτ

]+

It is the worst peak to valley loss since the investments inception. This is then an indicator of risk,
used particularly in asset management.

3.2 Coherent risk measures

To measure risk is equivalent to establishing a correspondence ρ between the space X of random
variables (for instance the returns of a portfolio) and non-negative real numbers, i.e. ρ : X 7→ IR+

(scalar measures of risk).

A risk measure ρ is coherent if it satisfies the following properties:
− translation invariance: ∀X, ∀m ∈ IR, ρ(X + m) = ρ(X)−m.
− sub-additivity: ∀X, Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y )
− positive homogeneity: ∀λ ≥ 0, ∀X, ρ(λX) = λρ(X)
− monotonicity: ∀X, Y ∈ X with X ≤ Y , ρ(Y ) ≤ ρ(X).

Comments:
- ρ(X + Y ) > ρ(X) + ρ(Y ) would imply, for instance, that in order to decrease risk, it could be
convenient to split up a company into different distinct divisions. From the regulatory point of
view this would allow to reduce capital requirements. Note that covariance is subadditive, and this
property turned out to be essential in Markowitz portfolio theory.
- Monotonicity rules out any semi-variance type of risk measure.
- Sub-additivity is the mathematical equivalent of the diversification effect.

VaR is not sub-additive, except in the case in which the joint distribution of returns is elliptic. That
implies that portfolio diversification may lead to an increase of risk and prevents to add up the VaR
of different risk sources.

Counter-example: consider the case of a bank which has given a $100 loan to a client whose default
probability is equal to 0.008. With α = 99%, V aRα ≤ 0.
Consider now another bank which has given two loans of $50 each and for both, the default proba-
bility is equal to 0.008. In case the default probabilities of the two loans are independent, V aRα is
$50.
Hence we have that diversification, which is commonly considered as a way to reduce risk, can lead
to an increase of VaR.

Also, VaR is non-convex (weaker than coherent), which makes it impossible to use VaR to measure
the risk in portfolio optimization problems.

In the elliptical world, VaR and the expected shortfall are coherent risk measures, the Markowitz
variance-minimizing portfolio minimizes both of them. See for example Gupta, Arjun K.; Varga,
Tamas; Bodnar, Taras (2013). Elliptically contoured models in statistics and portfolio theory.


