Probabilistic Methods in Finance QEM, MMEF, MAEF, IMMAEF 2022-2023
 Mid-term, 19 March 2024

Please mention your degree (MAEF,...) on your sheet, and do not copy the questions. English or French can be used.
I. We consider the usual binomial model with 2 basis assets on 1 period:

- the risk-free asset is worth 1 at time 0 and $1+r$ at time 1 ,
- the risky asset is a stock paying no dividend; it is worth S at time 0 and S^{u} or S^{d} at time 1, with $S^{d}<S^{u}$.

We make the usual technical assumptions on the market (frictionless market), except regarding short selling.

1. In this question only, we assume $S^{u}=S(1+r)$. Is there any arbitrage opportunity in each of the following situations?
a. Short selling allowed, with no cost.
b. Short selling allowed, with a cost: if a stock is borrowed at time $0,(1+\varepsilon)$ stock has to be reimbursed at time 1 , for a given $\varepsilon>0$.
2. We make the usual assumptions on the market, including the no arbitrage opportunity assumption. In this question, we assume $r=0$.

We consider a general option with maturity $T=1$ on the stock. It is worth F at time 0 , and at time 1: F^{u} when the stock is worth S^{u} and F^{d} when the stock is worth S^{d}.
a. Let $\Delta=\frac{F^{u}-F^{d}}{S^{u}-S^{d}}$. Prove that $F-\Delta S=F^{u}-\Delta S^{u}$.
b. The option is quoted at $F^{u}-\Delta\left(S^{u}-S\right)+\varepsilon$ with $\varepsilon>0$. Build an arbitrage opportunity.

II. General model

A N-periods model with $(d+1)$ financial assets is built on a finite probability space (Ω, \mathcal{F}, P) equipped with a filtration $\left(\mathcal{F}_{n}\right)_{0 \leq n \leq N}$, making the vector of prices at time $n, \mathcal{S}_{n}=\left(S_{n}^{0}, S_{n}^{1}, \ldots S_{n}^{d}\right)$, being \mathcal{F}_{n}-measurable. Asset 0 is risk-free with a constant price (the risk-free rate is again taken equal to 0), the other assets are risky.

1. Recall in this context how a self-financing strategy Θ is defined.

You will give two different writings, with their financial interpretation.
The value at time n of the corresponding portfolio will be denoted as V_{n}^{Θ}.
2. Prove that if the prices of the basis assets are martingales under a probability P^{*} equivalent to P, then, for a self-financing strategy Θ :
a. $\left(V_{n}^{\Theta}\right)_{0 \leq n \leq N}$ is a martingale under P^{*} (prove everything),
b. Θ cannot be an arbitrage opportunity.

