Probabilistic Methods in Finance QEM, MMEF, MAEF, IMMAEF 2022-2023

Mid-term, 19 March 2024

Please mention your degree (MAEF,...) on your sheet, and do not copy the questions. English or French can be used.

- I. We consider the usual binomial model with 2 basis assets on 1 period:
 - the risk-free asset is worth 1 at time 0 and 1 + r at time 1,
 - the risky asset is a stock paying no dividend; it is worth S at time 0 and S^u or S^d at time 1, with $S^d < S^u$.

We make the usual technical assumptions on the market (frictionless market), except regarding short selling.

- 1. In this question only, we assume $S^u = S(1+r)$. Is there any arbitrage opportunity in each of the following situations?
 - **a.** Short selling allowed, with no cost.
 - **b.** Short selling allowed, with a cost: if a stock is borrowed at time 0, $(1 + \varepsilon)$ stock has to be reimbursed at time 1, for a given $\varepsilon > 0$.
- **2.** We make the usual assumptions on the market, including the no arbitrage opportunity assumption. In this question, we assume r = 0.

We consider a general option with maturity T = 1 on the stock. It is worth F at time 0, and at time 1: F^u when the stock is worth S^u and F^d when the stock is worth S^d .

- a. Let $\Delta = \frac{F^u F^d}{S^u S^d}$. Prove that $F \Delta S = F^u \Delta S^u$.
- **b.** The option is quoted at $F^u \Delta(S^u S) + \varepsilon$ with $\varepsilon > 0$. Build an arbitrage opportunity.

II. General model

A N-periods model with (d+1) financial assets is built on a finite probability space (Ω, \mathcal{F}, P) equipped with a filtration $(\mathcal{F}_n)_{0 \leq n \leq N}$, making the vector of prices at time n, $\mathcal{S}_n = (S_n^0, S_n^1, ... S_n^d)$, being \mathcal{F}_n -measurable. Asset 0 is risk-free with a constant price (the risk-free rate is again taken equal to 0), the other assets are risky.

1. Recall in this context how a self-financing strategy Θ is defined.

You will give two different writings, with their financial interpretation.

The value at time n of the corresponding portfolio will be denoted as V_n^{Θ} .

- 2. Prove that if the prices of the basis assets are martingales under a probability P^* equivalent to P, then, for a self-financing strategy Θ :
 - **a.** $(V_n^{\Theta})_{0 \le n \le N}$ is a martingale under P^* (prove everything),
 - **b.** Θ cannot be an arbitrage opportunity.