Université Paris 1 Panthéon Sorbonne MAEF, MMEF, QEM, IMAEF, 2022-2023

Final Exam: Portfolio Theory 10th May 2023

- Documents, calculators and cell phone are prohibited.
- The duration of the exam is **2h00**.
- It is forbidden to leave without returning the copy of your exam.
- The exam is composed of **3 exercices** which can be treated independently. In an exercise, you can use the results from the previous questions. We freely use the notations introduced in the course.

Exercice 1 (Questions on the lectures)

- 1. For a given loss L and confidence level $\alpha \in (0, 1)$, recall the definitions of the Value-at-Risk at level α of L denoted by $\operatorname{VaR}_{\alpha}(L)$ and the Expected Shortfall at level α of L denoted by $\operatorname{ES}_{\alpha}(L)$.
- 2. Prove that for any $c \ge 0$ and $d \in \mathbb{R}$, one has

$$\operatorname{VaR}_{\alpha}(cL+d) = c\operatorname{VaR}_{\alpha}(L) + d.$$

3. We now assume that $L \stackrel{d}{=} \mathcal{N}(\mu, \sigma^2)$ for some parameters $\mu \in \mathbb{R}$ and $\sigma \ge 0$. Prove that for any $\alpha \in (0, 1)$

$$\operatorname{VaR}_{\alpha}(L) = \mu + \sigma \Phi^{-1}(\alpha).$$

where Φ is cumulative distribution function of $\mathcal{N}(0,1)$.

- 4. What is the main drawback of assessing the risk of L using $\operatorname{VaR}_{\alpha}(L)$?
- 5. Does the $\text{ES}_{\alpha}(L)$ allow to circumvent the previous drawback?
- 6. Provide the definition of a copula of dimension N.

Exercice 2

In this exercise, we assume that investors have mean-variance preferences. We follow the notations introduced in the course. We consider N risky assets. We denote by $R = (R_1, \dots, R_N)$ where R_i stands for the return of the asset *i* for $i = 1, \dots, N$. We assume that the expected returns $(\mathbb{E}[R_i])_{1 \leq i \leq N}$ are not all identical. The covariance matrix of R is denoted by Σ and is assumed to be invertible. The rate of return of the risk free asset is denoted by r. We also recall the following notations introduced in the course: $a = \mathbf{1}^T \Sigma^{-1} \mathbb{E}[R], b = \mathbb{E}[R]^T \Sigma^{-1} \mathbb{E}[R],$ $c = \mathbf{1}^T \Sigma^{-1} \mathbf{1}, d = bc - a^2, f^2 = b - 2ar + cr^2.$

We consider the Lagrangian $\mathcal{L} = X^T \mathbb{E}[R] + (1 - \mathbf{1}^T X)r + \lambda (X^T \Sigma X - \sigma^2)$ where $\sigma^2 > 0$ is a given parameter and $\mathbf{1} = (1, \dots, 1)$.

- 1. Write explicitly the optimization problem to which the above Lagrangian \mathcal{L} is associated.
- 2. Write explicitly the two first order conditions associated to the Lagrangian.
- 3. Express the optimal weights X satisfying the two first order conditions as a function of the parameter λ .
- 4. Prove that one has

$$2\lambda = \pm \frac{\sqrt{L}}{\sigma},$$

where L is a quantity you will determine. Justify that L is positive.

- 5. Deduce the optimal weights X as a function of σ satisfying the optimality conditions of question 2).
- 6. Compute the expected return of the optimal portfolio composed of risky assets only. You will distinguish the two cases $\lambda = \frac{\sqrt{L}}{\sigma}$ and $\lambda = -\frac{\sqrt{L}}{\sigma}$.
- 7. Determine the fraction of wealth X_0 invested in the risk free asset. You will again distinguish the two cases $\lambda = \frac{\sqrt{L}}{\sigma}$ and $\lambda = -\frac{\sqrt{L}}{\sigma}$.

- 8. Deduce the return μ of the optimal portfolio composed of N risky assets and the risk free asset. Again distinguish the two cases as previously done.
- 9. When X is an efficient portfolio, give the expression of σ as a function of μr .
- 10. Deduce from the previous question the expression of the weights $X(\mu)$ as a function of μ .

Exercice 3

For x, we let $x_+ = \max(x, 0)$. We define the map $\rho: L^1(\mathbb{P}) \to \mathbb{R}$ by

$$\rho(X) = \mathbb{E}[X] + \frac{1}{2}\mathbb{E}[(X - \mathbb{E}[X])_+].$$

- 1. Prove that if $X \leq 0$ a.s. then $(X \mathbb{E}[X])_+ \leq -\mathbb{E}[X]$ a.s.
- 2. Deduce that if $X \leq 0$ a.s. then $\rho(X) \leq 0$.
- 3. By writing Y = X + Y X deduce that that $\rho(X) \leq \rho(Y)$ if $X \leq Y$ a.s.
- 4. Prove that for any $c \ge 0$ and any $d \in \mathbb{R}$, it holds

$$\rho(cX+d) = c\rho(X) + d.$$

What is the name of the above properties in the language of risk measures? What is the financial interpretation?

- 5. Prove that ρ is sub-additive.
- 6. Is ρ a coherent risk measure?