APPENDIX: consequence of the **non-zero quadratic variation** for the Brownian motion

Integration of a function g with respect to another function f: $\int_a^b g(t)df(t)$.

For a <u>class C^1 function f</u>, we take: $\int_a^b g(t)df(t) = \int_a^b g(t)f'(t)dt$. For f less smooth: if f is <u>of bounded variation on [a, b]</u>, the <u>Stieljes integral</u> is used.

Functions of bounded variation

The total variation of a real-valued function f, defined on an interval $[a, b] \subset \mathbb{R}$ is the quantity $V_{a,b}(f) = \sup_{\Delta \in \mathcal{P}} \sum_{k} |f(t_{k+1}) - f(t_k)|$ where the supremum is taken over the set of all partitions Δ of the considered interval.

For $\Delta = \{a = t_0 < t_1 < ... < t_p = b\}$ partition of [a, b], the norm (or step, or mesh) of the partition is the length of the longest of its subintervals: $|\Delta| = \max\{t_i - t_{i-1} \mid i = 1, ..., p\}$. Then $V_{a,b}(f) = \sup_{|\Delta| \to 0} \sum_k |f(t_{k+1}) - f(t_k)|,$

<u>Def</u>: $f: [a,b] \to \mathbb{R}$ is <u>of bounded variation</u> on [a,b] iff $V_{a,b}(f) < +\infty$.

 $f : \mathbb{R} \to \mathbb{R}$ is <u>of finite variation</u> iff f is of bounded variation on any $[a, b] \subset \mathbb{R}$.

Ex: If $f : [a,b] \to \mathbb{R}$ is differentiable with a derivative that is Riemann-integrable, its total variation is $V_{a,b}(f) = \int_a^b |f'(t)| dt$, i.e. the vertical component of the arc-length of its graph.

For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis (not considering the contribution of motion along x-axis) traveled by a point moving along the graph has a finite value.

Functions of bounded variation are precisely those with respect to which one may find <u>Stieltjes integrals</u> of all continuous functions g, defined as:

$$\int_{a}^{b} g(t)df(t) = \sup_{|\Delta| \to 0} \sum_{k} g(t_{k})[f(t_{k+1}) - f(t_{k})]$$

<u>Def</u>: A stochastic process is of bounded variation (or finite) iff its paths are P-as of bounded variation.

Quadratic variation

<u>Def</u>: A sequence (X_n) of random variables converges in probability towards the random variable X iff $\forall \varepsilon > 0$, $\lim_{n \to +\infty} P(|X_n - X| > \varepsilon) = 0$.

Note that convergence in L^2 implies convergence in probability.

<u>Def</u>: quadratic variation of a process $(X_t)_{t\geq 0}$ in [0,T], denoted $[X,X]_T$

= limit in probability of $\sum_{k=0}^{n-1} (X_{t_{k+1}} - X_{t_k})^2$ when the norm of the partition $t_0 = 0 < t_1 < \dots < t_n = T$ converges to 0.

Ex : the quadratic variation of the Brownian motion in [0, T] is T:

 (B_t) (\mathcal{F}_t) -Brownian motion, we have $[B, B]_T = T$ (convergence in L²).

Th : A continuous process of bounded variation in [0, T] has a quadratic variation on [0, T] equal to 0.

Dém : (X_t) such a process. $\Delta = \{t_0 = 0 < t_1 < \dots < t_n = T\}$ when $|\Delta| \to 0$, $\sum_{k=0}^{n-1} (X_{t_{k+1}} - X_{t_k})^2 \leq \sup_k |X_{t_{k+1}} - X_{t_k}| \cdot \sum_k |X_{t_{k+1}} - X_{t_k}|$ converges to 0 *P*-as, Indeed *P*-as in ω : $\sum_k |X_{t_{k+1}}(\omega) - X_{t_k}(\omega)| \leq M(\omega)$ ((*X_t*) *P*-as of bounded variation) and $\sup_k |X_{t_{k+1}}(\omega) - X_{t_k}(\omega)| \longrightarrow 0$ when $|\Delta| \to 0$ as *P*-as, $t \mapsto X_t(\omega)$ uniformly C⁰ on [0, *T*]. Then the convergence holds also in probability. \Box

Consequence: the Brownian motion is such that:

for any $T \ge 0$, as $[B, B]_T = T$, *P*-as, $t \mapsto B_t(\omega)$ is not a function of bounded variation in [0, T],

hence
$$\int_0^T H_t(\omega) dB_t(\omega)$$
 cannot be defined as a Stieljes integral.

One has to define globally a r.v. $\int H_t dB_t$. It cannot be defined pathwise (i.e. $\underline{\omega \text{ by } \omega}$).