Q.E.M., M.M.E.F., M.A.E.F., I.M.-M.A.E.F. Probabilistic Methods in Finance - Tutorial solutions

Exercise 1. 1. The company doesn't know how much dollars it will get at time T, because the future rate $(S_T = \text{number of dollars for } 1 \in)$ is not known today.

The company is therefore exposed to a foreign exchange risk (precisely, risk that S_T willvbe. It has two solutions to hedge this risk:

2. A forward contract locks in the exchange rate for a future transaction. The company will assume a *short position*: agrees to sell the asset (each euro) at time T for the given price.

(currency future on EUR: contract size = $125,000 \neq$, use the number of futures to match M – or to be the closest possible).

Total payoff at $T = MS_T + M(F(t,T) - S_T) = MF(t,T)$: the FX rate is locked at F(t,T).

3. The company can hedge its risk by buying M put options on euro which mature at time T.

At time T, the company receive M euros and $(K - S_T)^+$ for each put, where S_T is the value of one euro at time T. The resulting cash-flow is

$$M[S_T + (K - S_T)^+] = \begin{cases} MK \text{ if } S_T \leq K \text{ (the puts are exercised)} \\ MS_T \text{ if } S_T \geq K \text{ (the puts are not exercised)} \end{cases} = max(K, S_T) \$$$

This guarantees that the value of the euro will not be less than the exercise price K, while allowing the company to benefit from any favorable exchange-rate movements.

Exercise 2. 1. $\left(1+\frac{r_m}{m}\right)^m = 1+r_d$ with m = 12. Then $\frac{r_m}{m} = (1.1)^{\frac{1}{12}} - 1 = 0.797\%$ and $r_m = 9.569\%$. 2. $\forall x > 0, \forall m \in \mathbb{N}$ with $m \ge 2, (1+\frac{x}{m})^m > 1+x$, indeed $x \mapsto (1+\frac{x}{m})^m - x$ is increasing on \mathbb{R}^+ , strictly on \mathbb{R}^{*+} , and is worth 1 at 0.

Or $x \mapsto (1+x)^m$ strictly convex function on \mathbb{R}^+ , then above its tangent at 0.

3. See lecture notes.

Exercise 3. 1. $\forall t > 0$, $\ln \frac{N'(t)}{N(t)} = r$ then $(\ln N)'(t) = r$. We get $\ln N(t) = \ln N(0) + rt$ and $N(t) = N(0)e^{rt}$. 2. Decay: $N(t) = N(0)e^{-rt}$. Half-life: $t = \frac{\ln 2}{r}$.

Exercise 4. 1. See lecture notes.

- **2.** The 2 portfolios contain 1 stock if $S_T > K$ and K else.
- **3.** We consider a portfolio at time t made of 1 put, 1 underlying stock and -1 call. "-1 call" means that the call has been sold (for example written at that time).

At T, if $S_T \ge K$, call exercised, put not exercised: the stock is sold against K. if $S_T < K$, put exercised, call not exercised: the stock is sold against K. In both cases, we end up with K in the portfolio.

- 4. Then the portfolio has same value at t as a portfolio containing K 0-coupons maturing at T. We get: $P_t + S_t - C_t = KB(t, T)$.
- 5. If short sales are not allowed (but one can still borrow cash and write options), the call-put parity relationship reduces to $C_t + KB(t,T) \leq P_t + S_t$.

Indeed $C_t + KB(t,T) < P_t + S_t$ does not lead to an arbitrage opportunity, so can be observed.

Exercise 7.

1. The U.A. is the euro, let S_t its quote in \$ at t.

The holder of any currency can earn interest at the risk-free interest rate prevailing in this currency. This interest can be regarded as a dividend yield (case of a security that provides an income). We denote by r_f the value of the foreign risk-free interest rate with continuous compounding.

Consider the two following portfolios:

Portfolio A: one long forward contract on the security and F(t,T) 0-coupons in \$, with maturity T Portfolio B: 1 0-coupon in the currency.

The value of portfolio B at time t is $B_f(t,T)$ in the currency (with $B_f(t,T)$ price at t of the 0-coupon in the foreign currency), or $S_t B_f(t,T)$ \$ where S_t is the exchange rate at time t.

Both portfolios will contain one unit of the foreign currency at time T, then they must have same value at time t:

$$F(t,T) = S_t \frac{B_f(t,T)}{B_{\$}(t,T)} \qquad (*)$$

With continuous rates, we get: $F(t,T) = S_t e^{(r-r_f)(T-t)}$. This is called the "interest rate parity relation".

It involves the interest rate differential (domestic minus foreign $r - r_f$).

2.a. M changed at t in $\frac{M}{S_t}$ of the currency, and invested $\Rightarrow \frac{M}{S_t}(1+r_f)$ of the currency at time 1. The rate that can be locked by a forward contract is $F(t,T) = S_t \frac{1+r}{1+r_f}$.

b. Then at time 1 we have: $\frac{M}{S_t}(1+r_f)F(t,T) = M(1+r)$. The return is then r.

Interpretation: the gain on the highest interest rate is compensated by a loss in the FX (the foreign currency looses some power purchase because of its high interest rate).

Otherwise stated: the interest rate parity (*) states that hedged returns from investing in different currencies should be the same.

Exercise 8. 1. Commodity (e.g. wheat) submitted to some continuous losses due to the storage (mould).

2. We compare 2 portfolios at *t*:

Portf A: one long forward contract on the security plus F(t,T) 0-coupons with maturity T (or an amount of cash equal to $F(t,T)e^{-r(T-t)}$).

Portfolio B: $e^{\alpha(T-t)}$ U.A.

Let n(s) be the number of securities held in the portfolio B at time $s \in]t, T[$.

Between s and s + ds, each unit of the commodity held in portfolio B has a storage cost equal to $\alpha S_s ds$, or δds commodity. Then $dn(s) = -n(s)\alpha ds$, hence $n'(s) = -\alpha n(s)$ for any $s \in]t, T[$, and $n(s) = n(t)e^{-\alpha(s-t)}$. We get n(T) = 1.

Portfolios A and B are therefore worth the same at time T, the AOA assumption implies that they have the same value at time t: we obtain, with r = r(t,T) the continuous risk-free interest rate: $0 + F(t,T)e^{-r(T-t)} = S_t e^{\alpha(T-t)}$. Thus

$$F(t,T) = S_t e^{(r+\alpha)(T-t)}$$

Exercise 10.

1.a The risky asset return is worth at t = 1: $\frac{S^u - S}{S}$ with proba $p = P(S = S^u)$, $\frac{S^d - S}{S}$ with proba 1 - p.

If X = x with proba p and y with proba 1 - p, then the variance of X is

$$V(X) = px^{2} + (1-p)y^{2} - [px + (1-p)y]^{2} = p(1-p)(x^{2} - 2xy + y^{2}) = p(1-p)(x-y)^{2}$$

Then the volatility of the risky asset is $\sigma = \sqrt{p(1-p)} \frac{S^u - S^d}{S}$.

b. Volatility of the call: $=\sqrt{p(1-p)}\frac{S^u-K}{C}$. Prove that $\frac{S^u-K}{C} \ge \frac{S^u-S^d}{S}$. $C = \frac{p^*}{1+r}(S^u - K)$ with $p^* = \frac{S(1+r) - S^d}{S^u - S^d}$. Then $\frac{S^u - K}{C} = \frac{1+r}{p^*} = \frac{(1+r)(S^u - S^d)}{S(1+r) - S^d}$. Prove that $\frac{(1+r)}{S(1+r)-S^d} \ge \frac{1}{S}$. OK

2.a The portfolio "-1 call + Δ UA" is risk-free when $\Delta = \frac{F^u - F^d}{S^u - S^d}$ (usual notations), as its 2 possible values are: $-F^u + \Delta S^u$ and $-F^d + \Delta S^d$, which are equal for this choice of Δ .

Then its return can only be r, so we get, F being the option price at 0:

 $(-F + \Delta S)(1 + r) = -F^d + \Delta S^d$ (also equal to $-F^u + \Delta S^u$).

We deduce $F(1+r) = F^d + \frac{F^u - F^d}{S^u - S^d} [S(1+r) - S^d] = F^d + p^*(F^u - F^d)$, with $p^* = \frac{S(1+r) - S^d}{S^u - S^d}$. We obtain the usual formula $F = \frac{1}{1+r}(p^*F^u + (1-p^*)F^d)$.

b. We get $\Delta = \frac{22}{40}$ then $(1.1)F = 22 - \frac{22}{40}[130 - 110] = 11$ then F = 10 (or from $p^* = \frac{110-90}{130-90} = \frac{1}{2}$ and pricing formula).

The call being mispriced, we should be able to build an arbitrage opportunity (AO).

We know that the call at t = 1 can be replicated by a portfolio containing Δ equities and some cash. The call is cheap given the price of this portfolio, which is 10.

So we will buy the call and sell this portfolio:

Starting with nothing (no cash, no asset), we sell short $\frac{22}{40}$ equities and buy 1 call. We get $\frac{22}{40}100 - 9 = 46$ \$ that we invest for 1 year at rate 10%.

After 1 year, 2 cases:

- either the equity is worth 130, then we exercise the call: we pay 108 to receive 1 equity, we reimburse $\frac{22}{40}$ equities and are left, in value, with: $130 - 108 - \frac{22}{40}130 + 46 \times 1.1 = (20 - \frac{20}{40}130 + 46) \times 1.1 = 1.1$

- either the equity is worth 90, then we do not exercise the call: we reimburse $\frac{22}{40}$ equities and are left with $46 \times 1.1 - \frac{22}{40} \times 90 = (46 - \frac{20}{40} \times 90) \times 1.1 = 1.1$ \$

Both values are positive, so we have an AO.

Note that the portfolio constituted in above AO is risk-free as well: the call is bought at $C - \varepsilon$ instead of C, obtained as $\alpha + \Delta S$.

 $\Delta S - (C - \varepsilon) = -\alpha + \varepsilon$ is invested at rate r.

The unique value of above portfolio at time 1 can be computed in the lower state:

it is $-\Delta S^d + (\varepsilon - \alpha)(1 + r) = \varepsilon(1 + r) > 0$, as $\Delta S^d + \alpha(1 + r) = 0$ (low value of the call).

Multiplying the previous positions by 40, the strategy involves integer quantities of assets only and we still have an AO.

b. For the given option, let $F^u = F_1(\omega_1)$, $F^d = F_1(\omega_0)$, and μ_F be the expected return of the option. From $F = \frac{I\!\!\!E(F_1)}{1+\mu_F} = \frac{I\!\!\!E^*(F_1)}{1+r}$, we get like for the equity: $\mu_F - r = (p-p^*)\frac{F^u-F^d}{F}$. The option volatility being $\sqrt{p(1-p)}\frac{|F^u-F^d|}{F}$, we deduce: $\Pi_F = \Pi$ if $F^u > F^d$, $(F^u = F^d$ excluded for an option) $-\Pi$ if $F^u < F^d$, for example for a put.

 Π is the risk premium for the risk factor linked to the equity price. Options on this equity share this same risk factor.

Using the risk-neutral probability P^* (hence p^*) allows to price the options, without having to know (or estimate) the equity's risk premium, Π , and the actual probability p.

Exercise 11.

1. S_1 takes 2 values s_1^1 and s_1^2 . We have $S_1^{-1}(\{s_1^1\}) = \{\omega_1, \omega_2\}$ and $S_1^{-1}(\{s_1^2\}) = \{\omega_3, \omega_4\}$. Hence $\mathcal{F}_1 = \{\emptyset, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}, \Omega\}$.

 \mathcal{F}_2 is made of: \emptyset , Ω , and all singletons $\{\omega_i\}$, couples $\{\omega_i, \omega_j\}$, and triplets $\{\omega_i, \omega_j, \omega_k\}$.

2. The random variable Y is \mathcal{F}_1 -measurable iff for any Borel set A, $Y^{-1}(A) \in \{\emptyset, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}, \Omega\}$. This is equivalent to: $Y(\omega_1) = Y(\omega_2)$ and $Y(\omega_3) = Y(\omega_4)$.

3. Let X \mathcal{F}_2 -measurable. We look for Z \mathcal{F}_1 -measurable s.t. for any Y \mathcal{F}_1 -measurable, $\mathbb{E}(XY) = \mathbb{E}(ZY)$.

Let
$$Y \mathcal{F}_1$$
-measurable, we set $y = Y(\omega_1) = Y(\omega_2)$ and $y' = Y(\omega_3) = Y(\omega_4)$.

$$\mathbb{E}(XY) = \sum_i P(\{\omega_i\})X(\omega_i)Y(\omega_i) = y[P(\{\omega_1\})X(\omega_1) + P(\{\omega_2\})X(\omega_2)] + y'[P(\{\omega_3\})X(\omega_3) + P(\{\omega_4\})X(\omega_4)],$$

must be equal to $I\!\!E(ZY), \forall y, y'$.

 $Z(\omega_1) = Z(\omega_2)$ = is denoted by z and $Z(\omega_3) = Z(\omega_4)$ by z'.

We have
$$\mathbb{E}(ZY) = zy[P(\{\omega_1\}) + P(\{\omega_2\})] + z'y'[P(\{\omega_3\}) + P(\{\omega_4\})].$$

Hence $Z(\omega_1) = Z(\omega_2) = \frac{P(\{\omega_1\})X(\omega_1) + P(\{\omega_2\})X(\omega_2)}{P(\{\omega_1\}) + P(\{\omega_2\})}$ and $Z(\omega_3) = Z(\omega_4) = \frac{P(\{\omega_3\})X(\omega_3) + P(\{\omega_4\})X(\omega_4)}{P(\{\omega_3\}) + P(\{\omega_4\})}.$

We get $\mathbf{I}(XY) = \mathbf{I}(X|\mathcal{F}_1)Y),$

with
$$\mathbb{I}(X|\mathcal{F}_1)(\omega_1) = \mathbb{I}(X|\mathcal{F}_1)(\omega_2) = \frac{\mathbb{I}(X \mathbb{I}_{\{\omega_1,\omega_2\}})}{P(\{\omega_1,\omega_2\})}$$
 and same for $\{\omega_3,\omega_4\}$.

i.e. to calculate $\mathbb{E}(XY)$ for $Y \mathcal{F}_1$ -measurable, no need to have the finer information of the $X(\omega_i)$, the averages of $X(\omega_1)$ and $X(\omega_2)$ and of $X(\omega_3)$ and $X(\omega_4)$ are sufficient.

Generalisation:

if $\{B_1, B_2, ..., B_n\}$ is a complete system of events (a partition of Ω such that $\cup_i B_i = \Omega$), with $P(B_i) \neq 0$ for all i, and \mathcal{B} the sub- σ -algebra generated by this complete system (made of unions of B_i , and \emptyset), then for any $X \in L^1(\Omega, \mathcal{F}, P)$, $\mathbb{E}(X|\mathcal{B}) = \sum_{i=1}^n \frac{\mathbb{E}(X \ \mathbb{I}_{B_i})}{P(B_i)} \mathbb{I}_{B_i}$. Otherwise stated, on B_i , $\mathbb{E}(X|\mathcal{B})$ is equal to $\frac{\mathbb{E}(X \ \mathbb{I}_{B_i})}{P(B_i)}$.

Exercise 13.

1. Note: (\mathcal{F}_n) is the "natural filtration" associated to the stochastic process $(X_n)_{n \in \mathbb{N}^*}$. (X_n) is (\mathcal{F}_n) -adapted.

 (M_n) is (\mathcal{F}_n) -adapted and is in L^2 . $\mathbb{E}(M_{n+1}|\mathcal{F}_n) = \mathbb{E}(M_n + X_{n+1}|\mathcal{F}_n) = M_n + \mathbb{E}(X_{n+1}|\mathcal{F}_n) = M_n \ (X_{n+1} \text{ independent of } \mathcal{F}_n \text{ and centered}).$

2. Let $X_n = 1$ if success (proba p), 0 else. The X_n are independent and $N_n = X_1 + ... + X_n$. A martingale has a constant expectation. $\forall n, E(N_n - n\alpha) = n(p - \alpha)$, then α can only be p.

For $n \in \mathbb{N}$, let $\mathcal{F}_n = \sigma\{X_1, ..., X_n\}$. N_n is \mathcal{F}_n -mes. $I\!\!E(N_{n+1}|\mathcal{F}_n) = I\!\!E(N_n + X_{n+1}|\mathcal{F}_n) = N_n + I\!\!E(X_{n+1}|\mathcal{F}_n) = N_n + I\!\!E(X_{n+1}) = N_n + p.$ Then $(N_n - np)_{n \ge 1}$ is a martingale.

Note that we could have used the first question with $X_n - p$ replacing X_n .

Exercise 15.

 $\forall n \in \mathbb{N},$

· X_n is \mathcal{F}_n -measurable:

for $k \leq n, \Delta_{k-1}, M_{k-1}, M_k$ are \mathcal{F}_{k-1} or \mathcal{F}_k -measurable, hence \mathcal{F}_n -measurable.

· X_n is integrable: $|\Delta_{k-1}(M_k - M_{k-1})| \leq c(|M_k| + |M_{k-1}|)$ and the M_k are integrable.

$$\mathbb{E}(X_{n+1} - X_n | \mathcal{F}_n) = \mathbb{E}(\Delta_n (M_{n+1} - M_n) | \mathcal{F}_n) = \Delta_n \mathbb{E}(M_{n+1} - M_n | \mathcal{F}_n) \text{ as } \Delta_n \text{ is } \mathcal{F}_n \text{-measurable.}$$
$$= 0. \qquad \text{Then } \mathbb{E}(X_{n+1} | \mathcal{F}_n) - X_n = 0.$$

Exercise 16.

1. For any $1 \le k \le n$, $\{\tau = k\} \in \mathcal{F}_k \subset \mathcal{F}_n$, then $\{\tau \le n\} = \{\tau = 1\} \cup ... \cup \{\tau = n\} \in \mathcal{F}_n$. Therefore $\{\tau > n\} \in \mathcal{F}_n$.

2.
$$\boldsymbol{E}(M_T) = \boldsymbol{E}(\sum_{k=1}^T M_T \boldsymbol{\mathbb{I}}_{\{\tau=k\}}) = \sum_{k=1}^T \boldsymbol{E}(\boldsymbol{E}(M_T | \mathcal{F}_k) \boldsymbol{\mathbb{I}}_{\{\tau=k\}})$$
(note that the conditioning does not change anything when $k = T$).

$$= \boldsymbol{E}\left(\sum_{k=1}^T M_k \boldsymbol{\mathbb{I}}_{\{\tau=k\}}\right) = \boldsymbol{E}(M_\tau).$$

3. τ is a bounded stopping time. Indeed for $n \in \mathbb{N}^*$, $\{\tau = n\} = \{M_1 < G\} \cap ... \cap \{M_{n-1} < G\} \cap \{M_n \ge G\}$. Then $E(M_{\tau}) = E(M_0) = 0.$

Exercise 17.

Su^{N-1} Su^{N-2} $Su^{N-1}d$

F

Equity price at right top of the tree:
$$Su^{N-}$$

$$Su^{N-2}d$$

$$Su^{N-2}d^{2}$$

Corresponding price for the call:
$$C_{N-2}^{N-2} \qquad Su^{N-1} \\ C_{N-1}^{N-2} \\ C_{N-1}^{N-2} \\ Su^{N-2} d^2 - K$$

with $C_{N-1}^{N-1} = [p^*(Su^N - K) + (1 - p^*)(Su^{N-1}d - K)]e^{-r\Delta t}$

$$= [p^*Su^N + (1-p^*)Su^{N-1}d - K]e^{-r\Delta t} = Su^{N-1} - Ke^{-r\Delta t}$$
$$C_{N-1}^{N-2} = Su^{N-2}d - Ke^{-r\Delta t},$$
$$C_{N-2}^{N-2} = Su^{N-2} - Ke^{-2r\Delta t}.$$

Corresponding price for the delta:

$$\Delta_{N-2}^{N-2} \qquad \qquad \Delta_{N-1}^{N-1} \\ \Delta_{N-2}^{N-2} \qquad \qquad \Delta_{N-1}^{N-2}$$

$$\Delta_{N-1}^{N-1} = \frac{Su^N - K - [Su^{N-1}d - K]}{Su^N - Su^{N-1}d} = 1, \text{ same for } \Delta_{N-1}^{N-2},$$

while $\Delta_{N-2}^{N-2} = \frac{C_{N-1}^{N-1} - C_{N-1}^{N-2}}{Su^{N-1} - Su^{N-2}d} = 1.$

Interpretation: all these nodes corresponding to cases where the call will be exercised at T. The bank already holds 1 equity to be able to deliver it at T.

At the right bottom of the tree, the call will not be exercised, it is worth 0 at any node, and the delta is 0 as well. No equity needed anymore in the hedging portfolio.

Exercise 18.

1. We have $\forall K, T, (S_T - K)^+ + K = Max(S_T, K) = (K - S_T)^+ + S_T.$

Taking the expectation under the risk-neutral probability and dividing by e^{rT} , we get the the call-put parity relationship at time 0, using $S_0 = e^{-rT} \mathbf{I}^*(S_T)$.

2. 1 call - Δ_{call} U.A. is risk-free

(locally: precisely {1 option $-\Delta_n$ U.A.} is risk-free between n-1 and n),

1 call + some risk-free position is equivalent to 1 put + 1 U.A. (see proof of the call-put parity),

then 1 put + 1 U.A. $-\Delta_{call}$ U.A. is risk-free, from which we get that 1 put $-(\Delta_{call} - 1)$ U.A. is risk-free, ie $\Delta_{put} = \Delta_{call} - 1$.

Exercise 19.

1. Mentioned in the lecture:

For all $n \in \mathbb{N}$, Z_n is obviously \mathcal{F}_n -measurable and in L^1 , while $\mathbb{E}(Z_{n+1}|\mathcal{F}_n) = \mathbb{E}(\mathbb{E}(Z|\mathcal{F}_{n+1})|\mathcal{F}_n) = \mathbb{E}(Z|\mathcal{F}_n) = Z_n.$

2. $\mathbb{E}^*(Y) = \mathbb{E}(ZY) = \mathbb{E}(Y\mathbb{E}(Z|\mathcal{F}_k))$ as Y is \mathcal{F}_k -measurable (by definition of the conditional expectation) = $\mathbb{E}(YZ_k)$.

3. Let $V = \frac{1}{Z_{n-1}} \mathbb{E}(XZ_n | \mathcal{F}_{n-1})$. To prove $\mathbb{E}^*(X | \mathcal{F}_{n-1}) = V$, we have to prove that V is \mathcal{F}_{n-1} -measurable and that for all Y bounded \mathcal{F}_{n-1} -measurable, we have $\mathbb{E}^*(YV) = \mathbb{E}^*(YX)$. The first property is clear as Z_{n-1} and $E(XZ_n | \mathcal{F}_{n-1})$ are \mathcal{F}_{n-1} -measurable. Let $Y \mathcal{F}_{n-1}$ -measurable, YV is \mathcal{F}_{n-1} -measurable, then

 $\mathbf{E}^{*}(YV) = \mathbf{E}(YVZ_{n-1}) = \mathbf{E}(Y\mathbf{E}(XZ_{n}|\mathcal{F}_{n-1})) = \mathbf{E}(\mathbf{E}(YXZ_{n}|\mathcal{F}_{n-1})) \text{ from } Y \mathcal{F}_{n-1}\text{-measurable}$ $= \mathbf{E}(YXZ_{n}) = \mathbf{E}^{*}(YX) \text{ as } YX \text{ is } \mathcal{F}_{n}\text{-measurable}.$

4. Let $n \ge 1$, $\mathbb{E}^*(M_n - M_{n-1} | \mathcal{F}_{n-1}) = \frac{1}{Z_{n-1}} \mathbb{E}\left((M_n - M_{n-1})Z_n \mid \mathcal{F}_{n-1} \right)$ as $M_n - M_{n-1}$ is \mathcal{F}_n -measurable. The result is a \mathcal{F}_{n-1} -measurable r.v., we denote it by X_{n-1} . For $n \ge 1$, let $M'_n = M_n - \sum_{k=1}^n X_{k-1}$. We have to prove that $(M'_n)_{n \in \mathbb{N}^*}$ is a (\mathcal{F}_n) -martingale under P^* .

For $n \ge 1$, $M'_n - M'_{n-1} = M_n - M_{n-1} - X_{n-1} = M_n - M_{n-1} - \mathbb{I}^*(M_n - M_{n-1}|\mathcal{F}_{n-1})$, from the previous result. Hence $\mathbb{I}^*(M'_n - M'_{n-1}|\mathcal{F}_{n-1}) = 0$.

Exercise 20. 1. Let $s \leq t$. B_s and B_t are centered, then $\mathbb{E}(B_sB_t) = Cov(B_s, B_s + B_t - B_s) = \mathbb{E}(B_s^2)$ as B_s and $B_t - B_s$ are independent. And $\mathbb{E}(B_s^2) = s$.

2. 2 main properties of the conditional expectation that are used:

- $\cdot X \mathcal{B}$ -measurable $\Rightarrow \mathbb{I}(X|\mathcal{B}) = X$
- $\cdot X$ independent of $\mathcal{B} \Rightarrow \mathbb{E}(X|\mathcal{B}) = \mathbb{E}(X)$

 $\forall t \ge 0, B_t \sim \mathcal{N}(0, t) \text{ therefore the r.v. are integrable: Gaussian variables have moments of any order and } X \sim \mathcal{N}(m, \sigma^2) \Rightarrow \mathbb{E}(e^{\lambda X}) = e^{\lambda m + \frac{\lambda^2}{2}\sigma^2} \text{ (Laplace transform) then } \mathbb{E}(e^{\lambda B_t}) = \mathbb{E}(e^{\frac{\lambda^2}{2}t}) \text{ ie } \mathbb{E}(e^{\lambda B_t - \frac{\lambda^2}{2}t}) = 1.$

$$s \leq t: \qquad \cdot \mathbb{E}(B_t | \mathcal{F}_s) = \mathbb{E}(B_s + B_t - B_s | \mathcal{F}_s) = B_s + \mathbb{E}(B_t - B_s) = B_s,$$

$$\cdot \mathbb{E}((B_t - B_s)^2 | \mathcal{F}_s) = \mathbb{E}((B_t - B_s)^2) = t - s = \mathbb{E}(B_t^2 | \mathcal{F}_s) - B_s^2 \text{ then } \mathbb{E}(B_t^2 - t | \mathcal{F}_s) = B_s^2 - s.$$

$$\cdot \mathbb{E}(e^{\lambda B_t - \frac{\lambda^2}{2}t} | \mathcal{F}_s) = \mathbb{E}(e^{\lambda (B_t - B_s)} | \mathcal{F}_s)e^{\lambda B_s - \frac{\lambda^2}{2}t} \text{ since } B_s \text{ is } \mathcal{F}_s \text{-measurable}$$

$$= e^{\lambda B_s - \frac{\lambda^2}{2}s} \text{ since } \mathbb{E}(e^{\lambda (B_t - B_s)} | \mathcal{F}_s) = \mathbb{E}(e^{\lambda (B_t - B_s)}) = e^{\frac{\lambda^2}{2}(t - s)}.$$

3. a For
$$0 \le k \le n-1$$
, $\frac{I\!\!E[(X_k)^2]}{(t_{k+1}-t_k)^2} = I\!\!E\left(\left[\frac{(B_{t_{k+1}}-B_{t_k})^2}{t_{k+1}-t_k}-1\right]^2\right) = \underbrace{I\!\!E([(X^*)^2-1]^2)}_M$ with $X^* \sim \mathcal{N}(0,1)$.
b. Let $Y = \sum_{k=0}^{n-1} (B_{t_{k+1}}-B_{t_k})^2$. Then $I\!\!E[(Y-T)^2] = I\!\!E\left[\left(\sum_{k=0}^{n-1} X_k\right)^2\right] = \sum_{k=0}^{n-1} I\!\!E[(X_k)^2]$.

Indeed, if j < k, $\mathbb{E}(X_j X_k) = 0$ since X_j and X_k are independent.

Therefore
$$||Y - T||_{L^2}^2 = M \sum_{k=0}^{n-1} (t_{k+1} - t_k)^2 \le \delta M \sum_{k=0}^{n-1} (t_{k+1} - t_k) = \delta M T$$
 where $\delta = |\{t_k\}|.$

Exercise 21.

1. (L_t) is a martingale, then $\forall t \geq 0$, $\mathbb{E}(L_t) = \mathbb{E}(L_0) = 1$. Therefore P^* is a probability.

2. If $Y \in L^1(\Omega, \mathcal{F}, P^*)$ is \mathcal{F}_t -measurable, then $\mathbb{I}^*(Y) = \mathbb{I}(YL_T) = \mathbb{I}(Y\mathbb{I}(L_T|\mathcal{F}_t)) = \mathbb{I}(YL_t)$. **3.a** Let $u \in \mathbb{R}$, we have (take off "i" below to replace characteristic function by generating function):

b. For $s \leq t$, from **a.**, $W_t - W_s \sim \mathcal{N}(0, t-s)$ under P^* .

 $(W_t)_{t \leq T}$ is a stochastic process with continuous paths, and $W_0 = 0$. $(B_t)_{t \leq T}$ and $(W_t)_{t \leq T}$ have the same natural filtration, denoted by $(\mathcal{F}_t)_{t \leq T}$. We want to prove that for $s \leq t$, $W_t - W_s$ is independent of \mathcal{F}_s under P^* . Writing $W_t - W_s = B_t - B_s + \lambda(t - s)$, we see easily the independence, but under P.

According to the lemma (proved below), to prove that $W_t - W_s$ is independent of \mathcal{F}_s under P^* , it is sufficient to prove:

$$\forall u \in \mathbb{R}, \ \mathbb{I}^{*}(e^{iu(W_t - W_s)} | \mathcal{F}_s) = e^{-\frac{u^2}{2}(t-s)} \ (*).$$

Let $Y \mathcal{F}_s$ -measurable. For $u \in \mathbb{R}$, we compare $\mathbb{I}^*(e^{iu(W_t - W_s)}Y)$ to $\mathbb{I}^*(e^{-\frac{u^2}{2}(t-s)}Y)$, using the same steps as in 3.a., with $\mathbb{E}(e^{-\lambda B_s})$ replaced by $\mathbb{E}(e^{-\lambda B_s}Y)$:

$$\mathbf{E}^{*}(e^{iu(W_{t}-W_{s})}Y) = \mathbf{E}(e^{-\lambda B_{t}-\frac{\lambda^{2}}{2}t}e^{iu[B_{t}-B_{s}+\lambda(t-s)]}Y) = \mathbf{E}(e^{(iu-\lambda)(B_{t}-B_{s})}e^{-\lambda B_{s}}Y)e^{-\frac{\lambda^{2}}{2}t+iu\lambda(t-s)} \\
= \mathbf{E}(e^{-\lambda B_{s}-\frac{\lambda^{2}}{2}s}Y)e^{-\frac{u^{2}}{2}(t-s)} \text{ (comparing to 3.a.)} \\
= \mathbf{E}^{*}(e^{-\frac{u^{2}}{2}(t-s)}Y), \quad \text{i.e. (*).}$$

Note: proof of the lemma: we have: $\forall B \in \mathcal{B}, E(e^{iuX} \frac{I_B}{P(B)}) = E(e^{iuX}).$

Then X has same law under P than under the probability with density $\frac{I_B}{P(B)}$ with respect to P (the characteristic functions are the same). Then for any $f : \mathbb{R} \to \mathbb{R}$ Borelian and bounded, $E(f(X) \stackrel{I\!\!\!/}{\underline{I}_B}) = E(f(X))$ i.e. $E(f(X) I\!\!\!/_B) = E(f(X))E(I\!\!\!/_B)$, which proves the independence.

4.
$$S_T \ge K \iff S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma W_T} \ge K \Leftrightarrow \sigma W_T \ge \ln \frac{K}{S_0} - (r - \frac{\sigma^2}{2})T$$

Then $P^*(S_T \ge K) = P^*(W_1 \le d_2) = N(d_2)$ where $d_2 = \frac{ln\frac{S_0}{K} + (r - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$.

Exercise 22. 1.
$$\int_{0}^{T} f(t) dB_{t} = \sum_{k=0}^{n-1} a_{k} (B_{t_{k+1}} - B_{t_{k}}).$$

The $B_{t_{k+1}} - B_{t_{k}}$ are independent and $B_{t_{k+1}} - B_{t_{k}} \sim \mathcal{N}(0, t_{k+1} - t_{k}).$
Then $\int_{0}^{T} f(t) dB_{t} \sim \mathcal{N}\left(0, \sum_{k=0}^{n-1} a_{k}^{2}(t_{k+1} - t_{k})\right)$ ie $\mathcal{N}\left(0, \int_{0}^{T} f^{2}(t) dt\right).$
2. See lecture notes

Exercise 23.

We consider a simple process $(H_t)_{0 \le t \le T}$ such that $H_t(\omega) = \sum_{k=0}^{n-1} H^k(\omega) \mathcal{I}_{[t_k, t_{k+1}]}(t)$ with $t_0 = 0 < t_1 < \dots < t_n = T$, and for $0 \le k \le n-1$, $H^k \in L^2(\Omega, \mathcal{F}, P)$ and \mathcal{F}_{t_k} -measurable.

 \star continuity : *P* as in ω :

$$\left(\int_0^t H_s dB_s\right)(\omega) = \sum_{k=0}^{n-1} H^k(\omega)(B_{t_{k+1}\wedge t}(\omega) - B_{t_k\wedge t}(\omega)) \text{ and } t \mapsto B_t(\omega) \text{ is continuous.}$$

* The 2 processes are $(\mathcal{F}_t)_{0 \le t \le T}$ -adapted:

For $0 \le t \le T$: adding t in the subdivision, with $t = t_N$, we get $\int_0^t H_u dB_u = \sum_{k=0}^{N-1} H^k (B_{t_{k+1}} - B_{t_k})$, \mathcal{F}_t -measurable, as sum of r.v. \mathcal{F}_t -measurable (for each $k, t_k \leq t_N = t$). Same for the 2nd process.

* For $s \leq t \leq T$, we want to prove: $\mathbb{I}\left(\int_{0}^{t} H_{u} dB_{u} | \mathcal{F}_{s}\right) = \int_{0}^{s} H_{u} dB_{u}.$ We add s and t in the subdivision (and rename the times), getting $t_0 = 0 < t_1 < ... < t_N = T$, then, with $M_n = \int_0^{t_n} H_u dB_u$, it is sufficient to prove that (M_n) is a (\mathcal{F}_{t_n}) -martingale. Obtained from:

$$\forall 0 \le n \le N-1, \ \mathbb{I}(M_{n+1}-M_n|\mathcal{F}_{t_n}) = \mathbb{I}(H^n(B_{t_{n+1}}-B_{t_n})|\mathcal{F}_{t_n}) = \underbrace{H^n}_{\mathcal{F}_{t_n}-\text{meas}} \mathbb{I}(\underbrace{B_{t_{n+1}}-B_{t_n}}_{\text{indep of }\mathcal{F}_{t_n}}|\mathcal{F}_{t_n}) = 0.$$

The conclusion is straightforward as s and t belong to the subdivision $(s = t_m \text{ for some } m \text{ and } t = t_N)$.

 \star on the same way: $\mathbb{I}(M_{n+1}^2|\mathcal{F}_{t_n}) = M_n^2 + \mathbb{I}[(M_{n+1} - M_n)^2|\mathcal{F}_{t_n}]$ indeed double product: $\mathbb{E}[M_n(M_{n+1}-M_n)|\mathcal{F}_{t_n}] = M_n\mathbb{E}[M_{n+1}-M_n|\mathcal{F}_{t_n}] = 0$ (martingale).

But $\mathbb{I}[(M_{n+1} - M_n)^2 | \mathcal{F}_{t_n}] = (H^n)^2 \mathbb{I}[(\Delta B_n)^2 | \mathcal{F}_{t_n}] = (H^n)^2 (t_{n+1} - t_n) = \int_t^{t_{n+1}} H_s^2 ds.$

2. We deduce that for $0 \le t \le T$, $\mathbb{E}\left[\left(\int_0^t H_s dB_s\right)^2\right] = \mathbb{E}\left(\int_0^t H_s^2 ds\right)$ (in particular for t = T), as a martingale has a constant expectation (we take the 2nd one).

Interpretation: with $I(H) = \int_0^T H_t dB_t$ for H simple process, we get: $\mathcal{E} \to L^2(\Omega)$

we get: $\mathcal{L} \to \mathcal{L}^{(22)}$ $H \mapsto I(H)$ with $||I(H)||_{L^2(\Omega)} = ||H||_{L^2(\Omega \times]0,T[)}$ isometry from \mathcal{E} equipped with the norm $L^2(\Omega \times]0,T[,\mathcal{F} \times \mathcal{B}_{\mathbb{R}^+},P \times dt)$ in $\underbrace{L^2(\Omega,\mathcal{F},P)}_{\text{complete space}}$.

Allows to extend, by density, to $\bar{\mathcal{E}}$ which contains $\left\{ H_{\cdot}(.) \text{ measurable, } (\mathcal{F}_t) \text{ adapted s.t. } \mathbb{I}\left(\int_0^T H_t^2 dt\right) < +\infty \right\}.$

Exercise 24. 1.
$$f(t,x) = e^{\frac{t}{2}} cosx$$
. We have $df(t, B_t) = \frac{1}{2} X_t dt - e^{\frac{t}{2}} sinB_t dB_t - \frac{1}{2} X_t dt$,
then $X_t = 1 - \int_0^t e^{\frac{s}{2}} sinB_s dB_s$.
2. $X_t = \int_0^t e^{\frac{s}{2}} cosB_s dB_s$.
3. $f(t,x) = (x+t)e^{-x-\frac{t}{2}}$. We have $\frac{\partial f}{\partial x}(t,x) = e^{-x-\frac{t}{2}} - f(t,x)$ and $\frac{\partial^2 f}{\partial x^2}(t,x) = -2e^{-x-\frac{t}{2}} + f(t,x)$, then
 $X_t = \int_0^t e^{-B_s - \frac{s}{2}} (1 - s - B_s) dB_s$.
Note that $\frac{\partial f}{\partial t}(t,x) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t,x) = 0$ in the 3 cases.

Exercise 25.

A. 1. See in chapter II. the computation of a future price when there is a continuous dividend on the U.A.: we proved that the portfolio (B) containing $e^{(r-\delta)(T-t)}$ stocks at time t, and in which all the dividends continuously paid are immediately reinvested in the stock, will contain exactly 1 stock at time T. We deduced that $F(t,T) \stackrel{(*)}{=} S_t e^{(r-\delta)(T-t)}$.

Here we get
$$F(t,T) = S_0 e^{(\mu - \frac{\sigma^2}{2})t + \sigma B_t} e^{(r-\delta)(T-t)} = S_0 e^{(r-\delta)T} e^{(\mu - r + \delta - \frac{\sigma^2}{2})t + \sigma B_t} = F(0,T) e^{(\mu - r + \delta - \frac{\sigma^2}{2})t + \sigma B_t}.$$

2. We deduce $dF(t,T) = F(t,T)((\mu - r + \delta)dt + \sigma dB_t)$, by comparison with the equation for (S_t) or using the Ito lemma (to compute $dG(t, S_t)$ when $G(t, x) = xe^{(r-\delta)(T-t)}$).

B. 1. Like in the case with no dividend, the price at time t depends on t, S_t , and not on S_s , s < t, since the future variations of the UA price is function only of S_t (Markov process), denoted by $F(t, S_t)$ where $F: [0,T] \times \mathbb{R}^+ \to \mathbb{R}, \ (t,x) \mapsto F(t,x).$

F is again of class $C^{1,2}$.

2. See course notes page 37: for any financial asset whose price at time t can be written $F(t, S_t)$ with $F C^{1,2}$, F satisfies the PDE ("parabolic equation"):

$$\frac{\partial F}{\partial t}(t,x) + (r-\delta)x\frac{\partial F}{\partial x}(t,x) + \frac{\sigma^2}{2}x^2\frac{\partial^2 F}{\partial x^2}(t,x) = rF(t,x)$$

3. A particular solution F is identified by the "boundary condition", that sets the value of $F(T, \cdot)$ (payoff of the option at T as a function of S_T).

4. Forward contract with maturity T, future price K (note that $K = F(t_0, T)$ with t_0 the inception date of the contract).

Value of the contract at t (it delivers at T: 1 stock against the payment of K) = $S_t e^{-\delta(T-t)} - K e^{-r(T-t)}$, denoted by $F(t, S_t)$.

We check that $F(t, x) = xe^{-\delta(T-t)} - Ke^{-r(T-t)}$ satisfies the equation indeed.

Exercise 26. Black-Scholes model when the stock pays a continuous dividend yield at a constant annualised rate of δ (see previous exercise).

For any financial asset whose price at time t can be written $F(t, S_t)$ with $F C^{1,2}$, F satisfies the PDE:

$$\frac{\partial F}{\partial t}(t,x) + (r-\delta)x\frac{\partial F}{\partial x}(t,x) + \frac{\sigma^2}{2}x^2\frac{\partial^2 F}{\partial x^2}(t,x) = rF(t,x)$$

The given function F corresponds to the price of a European call with maturity T and strike price K, then F satisfies the previous equation, and $F(T, x) = (x - K)^+$.

We have $F(t, x) = C(t, xe^{-\delta(T-t)})$, where C is the call price functional when the U.A. pays no dividend.

The call on the stock paying the continuous dividend is equivalent to a call on the portfolio B described in exercise 25, which is now an underlying asset paying no dividend.

Exercise 27. 1.
$$C_0 + Ke^{-rT} = P_0 + S_0$$
 and $C_0 = S_0 N(d_1) - Ke^{-rT} N(d_2) \Rightarrow$
 $P_0 = S_0 N(d_1) - Ke^{-rT} N(d_2) + Ke^{-rT} - S_0 = Ke^{-rT} N(-d_2) - S_0 N(-d_1).$

2. The price at time t can be written $F(t, S_t)$ (Markov).

We consider locally a portfolio constituted of -1 option and $\Delta_t = \frac{\partial F}{\partial x}(t, S_t)$ U.A..

Let V_t be the value of the portfolio at time t: $V_t = -F(t, S_t) + \Delta_t S_t$.

The variation of the portfolio value between t and t + dt is: $dV_t = -dF(t, S_t) + \Delta_t dS_t$ with

$$dF(t, S_t) = \left[\frac{\partial F}{\partial t}(t, S_t) + \frac{\partial^2 F}{\partial x^2}(t, S_t)\frac{\sigma^2}{2}(S_t)^2\right]dt + \frac{\partial F}{\partial x}(t, S_t)dS_t.$$

Then $dV_t = -\left[\frac{\partial F}{\partial t}(t, S_t) + \frac{\partial^2 F}{\partial x^2}(t, S_t)\frac{\sigma^2}{2}(S_t)^2\right]dt$ contains terms in dt only and none in $dB_t.$
The portfolio is then risk-free (no randomness), then $dV_t = rV_tdt = r\left[-F(t, S_t) + \frac{\partial F}{\partial x}(t, S_t)S_t\right]dt.$
We get the PDE satisfied by $F: \quad \frac{\partial F}{\partial t}(t, S_t) + rS_t\frac{\partial F}{\partial x}(t, S_t) + \frac{\partial^2 F}{\partial x^2}(t, S_t)\frac{\sigma^2}{2}(S_t)^2 = rF(t, S_t).$

It is independent of μ , as is the boundary condition.

Option pricing can therefore be done as if investors were risk-neutral, hence the formula.

3.
$$F_0 = e^{-rT} \mathbf{I}^* (S_0^2 e^{(2r-\sigma^2)T+2\sigma W_T}) = S_0^2 e^{(r+\sigma^2)T} \mathbf{I}^* (e^{-\frac{(2\sigma)^2}{2}T+2\sigma W_T}) = S_0^2 e^{(r+\sigma^2)T}.$$

4.a.
$$dF(t, S_t) = \left[\frac{\partial F}{\partial t}(t, S_t) + \frac{\partial^2 F}{\partial x^2}(t, S_t)\frac{\sigma^2}{2}(S_t)^2\right]dt + \frac{\partial F}{\partial x}(t, S_t)dS_t$$

b. From a., the portfolio $\begin{cases} -1 \text{ option} \\ \Delta_t \text{ UA} \end{cases}$ is risk-free between t and t + dt for $\Delta_t = \frac{\partial F}{\partial x}(t, S_t)$.

 Δ_t is the quantity of UA to be held at time t by the option seller when he wants to be hedged. The hedging portfolio has to be adjusted dynamically.

c.
$$s_t = \sigma \frac{\Delta_t S_t}{F_t}$$
, then the option volatility is $\sigma \frac{|\Delta_t| S_t}{F_t}$.

d. For a call, $\Delta_t = N(d_1(t, S_t)) \ge 0$ and $F_t = S_t N(d_1(t, S_t)) - K e^{-r(T-t)} N(d_2(t, S_t)) \le S_t N(d_1(t, S_t)) = S_t \Delta_t$, then $s_t \ge \sigma$.

e. If S_t is small, the put has a high probability to be exercised, then its price is close to $Ke^{-r(T-t)} - S_t$, and its volatility is low (as S_t variations are small compared to $Ke^{-r(T-t)}$ and to the put price).