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Probabilistic Methods in Finance - Tutorial solutions

Exercise 1. 1. The company doesn’t know how much dollars it will get at time T', because the fu-
ture rate (S7 = number of dollars for 1=€) is not known today.

The company is therefore exposed to a foreign exchange risk (precisely, risk that St willvbe. It has two
solutions to hedge this risk:

2. A forward contract locks in the exchange rate for a future transaction. The company will assume a
short position: agrees to sell the asset (each euro) at time 7" for the given price.
(currency future on EUR: contract size = 125,000€, use the number of futures to match M — or to be

the closest possible).
Total payoff at T'= M Sy + M(F(t,T) — Sp) = MF(t,T): the FX rate is locked at F(t,T).

3. The company can hedge its risk by buying M put options on euro which mature at time 7.
At time T, the company receive M euros and (K — St)* for each put, where St is the value of one euro
at time T'. The resulting cash-flow is

MK if St < K (the puts are exercised)

= K. S
M Sy it Sp > K (the puts are not exercised) maz (K, St) $

M[St + (K — Sr)"] = {

This guarantees that the value of the euro will not be less than the exercise price K, while allowing the
company to benefit from any favorable exchange-rate movements.

m
Exercise 2. 1. (1 + “”) = 1+ 74 with m = 12. Then = = (1.1)i2 — 1 = 0.797% and r,, = 9.569%.
m m

2. Vo >0,Vm € IN with m > 2, (1+ )™ > 1+ 2, indeed z + (14 =)™ — x is increasing
on IR, strictly on IR*", and is worth 1 at 0.

Or z + (1 + z)™ strictly convex function on IR™, then above its tangent at 0.

3. See lecture notes.

Exercise 3. 1. Vt > 0, In %(tt)) =7 then (In N)'(t) = r. We get In N(t) = In N(0)+rt and N(t) = N(0)e".

In2
2. Decay: N(t) = N(0)e "t. Half-life: ¢t = ekl
r

Exercise 4. 1. See lecture notes.
2. The 2 portfolios contain 1 stock if ST > K and K$ else.

3. We consider a portfolio at time ¢ made of 1 put, 1 underlying stock and -1 call.
”-1 call” means that the call has been sold (for example written at that time).

At T, if Sp > K, call exercised, put not exercised: the stock is sold against K$.
if ST < K, put exercised, call not exercised: the stock is sold against K$.
In both cases, we end up with K$ in the portfolio.
4. Then the portfolio has same value at ¢ as a portfolio containing K 0-coupons maturing at 7T'.

We get: P, + S, — C, = KB(t,T).

5. If short sales are not allowed (but one can still borrow cash and write options), the call-put parity
relationship reduces to C, + KB(t,T) < P, + S;.



Indeed C; + KB(t,T) < P, + Sy does not lead to an arbitrage opportunity, so can be observed.

Exercise 7.

1. The U.A. is the euro, let S; its quote in $ at ¢.

The holder of any currency can earn interest at the risk-free interest rate prevailing in this currency. This
interest can be regarded as a dividend yield (case of a security that provides an income).
We denote by 7 the value of the foreign risk-free interest rate with continuous compounding.

Consider the two following portfolios:
Portfolio A: one long forward contract on the security and F'(¢,T) O-coupons in $, with maturity T'
Portfolio B: 1 0-coupon in the currency.

The value of portfolio B at time ¢ is Bf(t,T') in the currency (with Bf(t,T') price at t of the 0-coupon in
the foreign currency), or S;Bf(t,T) $ where S; is the exchange rate at time ¢.

Both portfolios will contain one unit of the foreign currency at time 7', then they must have same value
at time ¢: B(LT)
F(t,T) =S, -1
e

With continuous rates, we get: F(¢,7) = Ser=r)(T=t)  This is called the ”interest rate parity relation”.

It involves the interest rate differential (domestic minus foreign r —ry).

2.a. M changed at t in SM of the currency, and invested = SM(l +r¢) of the currency at time 1.
t t

147

1+ rf ’

The rate that can be locked by a forward contract is F(t,T) = S;

b. Then at time 1 we have: SMt(l +r¢)F(t,T) = M(1+r). The return is then 7.

Interpretation: the gain on the highest interest rate is compensated by a loss in the FX (the foreign
currency looses some power purchase because of its high interest rate).

Otherwise stated: the interest rate parity (*) states that hedged returns from investing in different cur-
rencies should be the same.

Exercise 8. 1. Commodity (e.g. wheat) submitted to some continuous losses due to the storage
(mould).

2. We compare 2 portfolios at ¢:

Portf A: one long forward contract on the security plus F(¢,7") O-coupons with maturity 7' (or an amount
of cash equal to F(t,T)e~"T=t).

Portfolio B: e~ U.A.

Let n(s) be the number of securities held in the portfolio B at time s €]t, T7|.

Between s and s+ ds, each unit of the commodity held in portfolio B has a storage cost equal to aSsds,or
dds commodity. Then dn(s) = —n(s)ads, hence n/(s) = —an(s) for any s €]t, T, and n(s) = n(t)e= =1,
We get n(T) = 1.

Portfolios A and B are therefore worth the same at time 7', the AOA assumption implies that they
have the same value at time ¢: we obtain, with » = r(¢,7) the continuous risk-free interest rate:
0+ F(t,T)e"T=Y = SieT=1) Thus

F(t, T) — Ste(’r‘-i-oé)(T—t)



Exercise 10.
1.a The risky asset return is worth at ¢t = 1: Sufgs with proba p = P(S = S%),
5°-5 with proba 1 —
3 proba P
If X =z with proba p and y with proba 1 — p, then the variance of X is

V(X) =pa® + (1= p)y® — [pr + (1 = p)y)* = p(1 - p)(2® — 22y +y*) = p(1 — p)(z — y)*.
Then the volatility of the risky asset is ¢ = v/p(1 — p)< =

S
b. Volatility of the call: = /p(1 — )SuCTK Prove that SuCTK > Sugsd.
S(1+4r) SUoK _ Lir (1+r)(5*=5%)
C = E (5" - )vv1thp = S5 Then = = ST
Prove that — ) > L OK

SAt+r)—54 = S

2.a The portfolio -1 call + A UA” is risk-free when A = gz:gz (usual notations),
as its 2 possible values are: —F* + AS* and —F¢ + AS?, which are equal for this choice of A.
Then its return can only be 7, so we get, F' being the option price at 0:
(—F +AS)(1+7) = —F 4+ AS? (also equal to —F" + ASY).
We deduce F(1 +7) = F¢4 £ Su Sd [S(l +7) =89 = Fé 4 p*(F* — F4), with p* = 5(4r) 57,

Su,sd
We obtain the usual formula F = I—L(p*F“ +(1- p*)Fd.

b. We get A = 22 then (1.1)F = 22 — 22[130 — 110] = 11 then F = 10 (or from p* = 15=30 = 1 and
pricing formula).

The call being mispriced, we should be able to build an arbitrage opportunity (AO).
We know that the call at ¢ = 1 can be replicated by a portfolio containing A equities and some cash.
The call is cheap given the price of this portfolio, which is 10.

So we will buy the call and sell this portfolio:

Starting with nothing (no cash, no asset), we sell short 22 G equities and buy 1 call. We get £ 22 =100 —9 = 468
that we invest for 1 year at rate 10%.

After 1 year, 2 cases:

- either the equity is worth 130, then we exercise the call: we pay 108 to receive 1 equity, we reimburse
22 equities and are left, in value, with: 130 — 108 — 22130 + 46 x 1.1 = (20 — m130 +46) x 1.1 = 1.18.

- either the equity is worth 90, then we do not exercise the call: we relmburse equltles and are left
w1th46><11——><90 (4 6——><90)><11—11$

Both values are positive, so we have an AQO.

Note that the portfolio constituted in above AQO is risk-free as well: the call is bought at C' — ¢ instead of
C, obtained as a + AS.
AS — (C —e) = —a + ¢ is invested at rate r.
The unique value of above portfolio at time 1 can be computed in the lower state:
itis —~ASY+ (e —a)(1+7)=e(1 +7) >0, as AS? + (1 +r) = 0 (low value of the call).

Multiplying the previous positions by 40, the strategy involves integer quantities of assets only and we
still have an AO.



3au= LG then E(S1) = pS* + (1 —p)S% = S(1 + p)

p(S — §9) 4+ 54 — §(1+ p)
h
ence { p*(Su_Sd)+Sd: S(1+T)

, we deduce p—r = (p —p*)SuT_Sd

while o = /p(1 — p) Sugsd. Therefore: IT = pap -
p(1—p

*

b. For the given option, let F* = Fy(w), F% = Fi(wo), and pup be the expected return of the option.
F o E(Fl) o E*(FI) . . . w\ Fu—pd . ",
rom F' = = , we get like for the equity: up —r = (p — p*)~%—. The option volatility
1+ pp dl +r
being /p(1 — p) |FUEF | we deduce: Iy = IIif F* > F4, (F* = F? excluded for an option)

—IIif F* < F9 for example for a put.

II is the risk premium for the risk factor linked to the equity price.
Options on this equity share this same risk factor.

Using the risk-neutral probability P* (hence p*) allows to price the options, without having to know (or
estimate) the equity’s risk premium, IT, and the actual probability p.

Exercise 11.

1. S; takes 2 values s} and s7. We have S ({s1}) = {w1, w2} and S7 ({s7}) = {ws,was}.
Hence F; = {0, {w1, w2}, {ws, ws}, Q}.

F» is made of: (), ©, and all singletons {w; }, couples {w;,w;}, and triplets {w;, w;,wy}.

2. The random variable Y is Fj-measurable iff for any Borel set A, Y ~1(A) € {0, {w1, w2}, {ws, w4}, Q}.
This is equivalent to: Y (w1) = Y (we) and Y (w3) = Y (wy).

3. Let X Fo-measurable. We look for Z Fj-measurable s.t. for any Y Fj-measurable, E(XY) = E(ZY).

Let Y Fi-measurable, we set y = Y (w1) = Y(w2) and 3/ = Y (w3) = Y (wy).

E(XY) = ZP({Wi})X(Wi)Y(Wi) = y[P({w1}) X (wi)+P({w2}) X (w2)]+y [P({ws}) X (ws) +P({wa}) X (wa)],
must belequal to B(ZY), Yy, .

Z(w1) = Z(wg2) = is denoted by z and Z(w3) = Z(w4) by 2.

We have E(ZY) = zy[P({w1}) + P({w2})] + 2"y [P({ws}) + P({wa})].

_ P X(w1) + P({w2}) X (w2) _ P({ws})X(ws) + P({wa}) X (wa)

Hence Z(w;) = Z(w2) and Z(ws3) = Z(ws)

P({wi}) + P({w2})
We get B(XY) = E(E(X|F)Y),

P({ws}) + P({ws})

E(X iy, n})
P({wi,w2})
i.e. to calculate E(XY) for Y Fi-measurable, no need to have the finer information of the X (w;), the

averages of X (w1) and X (ws) and of X (w3) and X (wy) are sufficient.

with B(X|F1)(w1) = B(X|F1)(we2) = and same for {ws, w4}

Generalisation:

if {By, Ba, ..., By, } is a complete system of events (a partition of 2 such that U; B; = Q), with P(B;) # 0 for

all 7, and B the sub-c-algebra generated by this complete system (made of unions of B;, and (), then for
" E(X1p,) E(X 15p,)
X e LY(Q,F,P), B(X|B) =)  — —=** =,

Ip,. Otherwise stated, on B;, F(X|B) is equal to



Exercise 13.

1. Note: () is the "natural filtration” associated to the stochastic process (Xn), N+
(Xn) is (Fp)-adapted.

(M,,) is (Fy)-adapted and is in L2
E(My+1|Fn) = E(My, + Xpt1|Fn) = My + E(X 41| Fn) = My, (X471 independent of F,, and centered).

2. Let X,, = 1 if success (proba p), 0 else. The X,, are independent and N,, = X1 + ... + X,.
A martingale has a constant expectation. Vn, E(N,, — na) = n(p — «), then « can only be p.

For n € N, let F,, = 0{X1,..., Xp,}. Ny is Fy-mes.
E(Nn—&-l‘-/rn) = E(Nn + Xn—i—l’]:n) = N, + E(Xn+1|fn) = Np + E(Xn—H) = Np +p.
Then (N, —np),>1 is a martingale.

Note that we could have used the first question with X,, — p replacing X,,.

Exercise 15.
vn € IN,
- X, is Fp-measurable:
for k <n, Ap_1, My_1, My, are Fj_1 or Fr-measurable, hence F,,-measurable.

- X, is integrable: [Ag_1(Myk — My_1)| < c¢(|Mg| + |Mg—1|) and the M}, are integrable.
c B(Xp41 — Xu|Fn) = BE(An(Myy1 — M) | Fn) = ApE(My11 — M, |F,) as A, is Fp-measurable.
~0. Then B(Xoi1)Fn) — X, = 0.

Exercise 16.
1. Forany 1 <k <n,{r=k} € F C Fp,then {r<n}={r=1}U..U{r=n} € F,.
Therefore {r > n} € F,.

T

T
2. E(My) = E()_ Mpli;—y) =Y E(B(Mr|Fy) Iir—43)
k=1

k=1
(note that the conditioning does not change anything when k = T)).

= E(XT:Mkﬂ{T_k}) = E(M,).

k=1
3. 7 is a bounded stopping time. Indeed for n € N*, {Tr =n} ={M; < G}N..N{M,_1 < G}N{M, > G}.
Then E(M,) = E(Mj) = 0.

Exercise 17.

SulN
SuN—1
Equity price at right top of the tree: SuN—2 SulN—1d
SulN—2d
SuNf2d2
SulN — K
N—-1
N2
Corresponding price for the call: C]]\\,[:ZQ SuN—ld— K
CN—2
N-1
SulN=2d?> - K

with CN~1 = [p*(SulY — K) + (1 — p*)(Sul~1d — K)]e 2!



_ [p SU _|_( )SUN 1d K] —rAt __ SUN 1 Ke—rAt
CN_f = SulN=2d — Ke ™,

CNZ5 = SulN=2 — Ke A,

SuN K —[SuMN~1'd — K]

SulN — SulN-14
ONZi —COnZh

SulN-1 — SuN—2q

N— _ N—-2
AN =1, same for Ay_7,

while AN "2 = =1.

Interpretation: all these nodes corresponding to cases where the call will be exercised at T'.
The bank already holds 1 equity to be able to deliver it at T'.

At the right bottom of the tree, the call will not be exercised, it is worth 0 at any node, and the delta is
0 as well. No equity needed anymore in the hedging portfolio.

Exercise 18.

1. We have VK, T, (St — K)™ + K = Max(S7,K) = (K — St)™ + S7.

Taking the expectation under the risk-neutral probability and dividing by e"”, we get the the call-put
parity relationship at time 0, using Sy = e "7 E*(S7).

2. 1 call - A.g U.A. is risk-free
(locally: precisely {1 option —A,, U.A.} is risk-free between n — 1 and n),
1 call + some risk-free position is equivalent to 1 put + 1 U.A. (see proof of the call-put parity),
then 1 put + 1 U.A. —A,y; U.A. is risk-free, from which we get that 1 put —(Agqu — 1) U.A. is risk-free,
ie Aput = Acan — 1.

Exercise 19.

1. Mentioned in the lecture:
For all n € IN, Z,, is obviously F,-measurable and in L', while
E(Zp1|Fn) = E(EB(Z|Fp1)|Fn) = E(Z|F) = Zy,

2. B°(Y)=E(ZY) = E(Y E(Z|F)) as Y is Fr-measurable (by definition of the conditional expectation)
= E(Y Zy).

1
3. Let V = 7 E(X Z,|Fn-1). To prove E*(X|F,—1) = V, we have to prove that V is F,,_j-measurable
n—1

and that for all Y bounded F,,_;-measurable, we have £*(YV) = E* (Y X).

The first property is clear as Z,,_1 and E(X Z,|F,—1) are JF,_1-measurable.

Let Y F,,_i-measurable, YV is F,,_i-measurable, then
FYV)=EYVZ,1)=EYEXZ,|Fn-1)) = E(E(YXZ,|Fp—1)) from Y F,_i-measurable
=EYXZ,) =FE(YX) as YX is F,-measurable.

1

4. Letn > 1, B*(My—My_1|Fot) = ——F ((Mn—Mnl)Zn
n—1

The result is a F,,—1-measurable r.v., we denote it by X, _1.

fn1> as M, —M,,_1 is F,-measurable..



n
For n > 1, let M} = M,, — Z Xg-1. We have to prove that (M,,) N+ is a (F)-martingale under P*.
k=1
Forn>1, M) — M) =M, — M,—1— Xn_1 =M, — M, — E(M, — My,_1|F,,—1), from the previous
result. Hence E*(M], — M],_,|Fn—1) = 0.

Exercise 20. 1. Let s <t. B, and B; are centered, then E(Bs;B;) = Cov(Bs, Bs + B; — Bs) = E(B?)
as Bs and B; — By are independent. And E(B?) = s.

2. 2 main properties of the conditional expectation that are used:
- X B-measurable = E(X|B) =
- X independent of B = F(X|B) = E(X)

Vt >0, By ~ N(0,t) therefore the r.v. are integrable: Gaussian variables have moments of any order and
2 2 2
X ~ N(m,0?) = E(eM) = rm+35-0” (Laplace transform) then E(e*Pt) = E(e%t) ie E(e’\Bt_%t) =1.

s <t . E(Bt|]:5) = E(Bs + By — Bs\fs) = Bs + E(Bt — Bs) = B,
- B((By — Bs)?|Fs) = E((B; — Bs)?) =t — s = B(B?|Fs) — B2 then E(B? — t|Fs) = B? — s.
2
- E(e /\Bt_Lt|}' ) = E(e )‘(Bf_BS)|]:) ABs=%t gince By is Fs-measurable
2 2
— *Bs—%5 gince E( ]]—") E(e ’\(Bt_BS)) — ey (t=9),

(thr1 — tr)?

2
3. aForOﬁkﬁn—l,WzE([w—ll ) = B([(X*)? — 1)%) with X* ~ N(0,1).

n— 2 n—
b. Let Y = z:l(Btk+1 — Btk) Then E[(Y T (Z Xk) ] = z:l E[(Xk)2]
k=0 k=0

Indeed, if j < k, E(X;X}) = 0 since X; and X}, are independent.

n—1 n—1
Therefore ||V — T|[3, = M Z(thrl —t1)? <M Z(tkﬂ —t) = OMT where 0 = |{tx}|.

Exercise 21.
1. (L) is a martingale, then V¢ > 0, E(L;) = F(Lo) = 1. Therefore P* is a probability.
. IfY € LY(Q, F, P*) is Fi-measurable, then E*(Y) = E(Y Ly) = E(Y E(L7|F;)) = E(Y Ly).

3.a Let u € IR, we have (take off ”¢” below to replace characteristic function by generating function):

Er (e Wi=We)y — E(e_)‘Bt_%tei“[Bf_BS"”\(t_s)]) as Wy — Wy is Fy-measurable
— B(eliuN(Bi=B.),-ABs) o S thiuA(t—s)

2 2 )
= F(e(n=N(Bi=Bs) )E(e_)‘BS_ATs)e_%(t_s)H“)‘(t_s), using that By — Bs and Bj are independent

iu . 2
%( (t s)HiuA(t—s) _ o~ (t—s)

=e e~ %

b. For s <t, from a., Wy — Wy ~ N(0,t — s) under P*.

(Wi)i< is a stochastic process with continuous paths, and Wy = 0.

(Bt)i<t and (Wy)i<r have the same natural filtration, denoted by (F)i<r.

We want to prove that for s <t, W; — Wy is independent of Fs under P*.

Writing W, — Wy = By — Bs + A\(t — s), we see easily the independence, but under P.



According to the lemma (proved below), to prove that W; — Wy is independent of Fg under P*, it is

sufficient to prove:

w2

Vu € IR, E*(eiu(Wt—Ws)|fs) — e—T(t—S) (*)

Let Y Fy-measurable. For u € R, we compare E*(e™W:=Ws)Y) to F(e_%(t 9)Y'), using the same steps
as in 3.a., with E(e=*Ps) replaced by E(e *P:Y):

E*(em(vv,_wg)y) _ E(ef)\Btfgteiu[Bf,—Bs—i-)\(t—s)]Y) _ E(e(iu—A)(Bt—Bs)e—)\BsY)eféit+iu)\(tfs)

2
= E(e "7 )e T (t=s) (comparing to 3.a.)

w2

= F(e7¢9Y), e (%)

Note: proof of the lemma: we have: VB € B, E(e'*X P{g)) = E(eX).

Then X has same law under P than under the probability with density % with respect to P
(the characteristic functions are the same). Then for any f : IR — IR Borelian and bounded,

E(f(X) ]‘(’g)) E(f(X)) ie. E(f(X)Ip)= E(f(X))E(fp), which proves the independence.

02
4. Sp > K <= Soe" =TT > K o oWy > Ik — (r — )T

l Yy
Then P*(Sy > K) = P*(Wi < do) = N(dy) where dy = n@ A 5T

oVT
T n—1
Exercise 22. 1. / f(t)dB; = Z ar(By,,, — Bt,)-
0 k=0
The By,,, — By, are independent and By, | — By, ~ N (0, tp41 — tr).
T n—1 T
Then / F()dB, NN(O, S a2t — tk)> ie N(o, / f2(t)dt).
0 =0 0
2. See lecture notes.
Exercise 23.
We consider a simple process (H;)o<t<7 such that Z HY( Vg 001(2)

withtg=0<t1 <...<t,=T,and for 0 < k <n—1, Hk € LQ(Q F,P) and F, -measurable.

* continuity : P as in w:

(/ Hy,dB ) Z H*(w )(Bt,, i nt(w) — By ae(w)) and ¢ — By(w) is continuous.
* The 2 processes are (]-'t)o<t<T—adapted‘
N-1
For 0 < ¢t < T: adding t in the subdivision, with ¢t = t5, we get / H,dB, = Z Hk Blgk+1 By,),

k=0
Fi-measurable, as sum of r.v. F;-measurable (for each k, ¢, <ty =t). Same for the 2nd process.

t
* For s <t < T, we want to prove: E(/ HudBu|.7:s) / H,dB,.

We add s and ¢ in the subdivision (and rename the times), getting to = 0 < t; < ... < tiy = T, then, with
tn

M, = H,dB,, it is sufficient to prove that (M,) is a (F;,)-martingale. Obtained from:
0



YO<n<N-—-1, E(My+1 — My|F,) = E(H"(Btn_H — By F,) = H" E(Btn+1 — By, |F,,)=0.
Fon— T
tn —IN€AS indep of Fy,

The conclusion is straightforward as s and t belong to the subdivision (s = t,, for some m and t = ty).

* on the same way: B(M2, ||F;,) = M2+ E[(Myq1 — M,)?|F,]
indeed double product: E[M,(Mp+1 — M,)|Ft,] = MpE[M,+1 — My|F,] = 0 (martingale).

But E[(Mos1 — Mo\, ] = (H"PE(ABLPIF, ) = (H" (b — 1) = | " s

tn

t 2 t
2. We deduce that for 0 < ¢t < T, EK/ HSst) } = E(/ H?ds) (in particular for t = T'), as a
0 0

martingale has a constant expectation (we take the 2nd one).

T
Interpretation: with I(H) = / H;dB; for H simple process,
0
we get: £ — L*(Q)
H — I(H) with [[I(H)||r20) = [[H]|L2x0,11)
isometry from &£ equipped with the norm L?(2x]0,7T[, F x B]R*’ P x dt)in L*(Q,F,P).
| ——
complete space

Allows to extend, by density, to £
T

which contains {H() measurable, (F;) adapted s.t. E(/ Hfdt) < 400 }
0

Exercise 24. 1. f(t,z) = e2cosz. We have df (t, By) = %Xtdt — e2sinBydB; — %Xtdt,
t S
then X; =1 — / e2sinBydBs.
0

¢
2. X; :/ e2cosBsdBs;.
0

Cpt of Cpt 0% f Cat
3. f(t,x) = (x+t)e* 2. We have %(t,:r) =e 772 — f(t,x) and ﬁ(t,x) = —2e "72 4 f(t,x), then
t
X, = / e P31 — s — B,)dB,.
0
of 10%f :
Note that E(t’ x)+ iw(t,x) =0 in the 3 cases.

Exercise 25.

A. 1. See in chapter II. the computation of a future price when there is a continuous dividend on the U.A.:

r—8)(T—t)

we proved that the portfolio (B) containing el stocks at time ¢, and in which all the dividends

continuously paid are immediately reinvested in the stock, will contain exactly 1 stock at time 7. We
deduced that F'(¢,T") ® S,e(r=0)(T=1t)

Here we get F(L‘,T) — Soe(u—a;)t-i-chte(r—é)(T—t) — Soe(r_é)Te(“_T+5_§)t+gBt _ F(O, T)e(M—T-Fé—é)t'Hth.

2. We deduce dF'(t,T) = F(t,T)((;r — r + 0)dt + 0dB;), by comparaison with the equation for (S;)
or using the Ito lemma (to compute dG(t, S;) when G(t,z) = ze(r=)T=1),

B. 1. Like in the case with no dividend, the price at time ¢ depends on ¢, S¢, and not on S, s < t, since
the future variations of the UA price is function only of S; (Markov process), denoted by F(t,S;) where
F:[0,T] x Rt = R, (t,x) — F(t,z).



F is again of class C'12.

2. See course notes page 37: for any financial asset whose price at time ¢ can be written F(t,S;) with F
C12, F satisfies the PDE (”parabolic equation”):

oF oF o2 ,0°F

E(t,x)—l—(r—&)x—( )+7 922

o (t,z) =rF(t, )

3. A particular solution F' is identified by the "boundary condition”, that sets the value of F(T,-) (payoff
of the option at T as a function of St).

4. Forward contract with maturity 7', future price K (note that K = F(ty,T") with ¢y the inception date
of the contract).

Value of the contract at ¢ (it delivers at 7" 1 stock against the payment of K)
= S;e 0Tt — Ke="(T=1)  denoted by F(t,Sy).
We check that F(t,x) = ze 0Tt _ Kem(T—1) gatisfies the equation indeed.

Exercise 26. Black-Scholes model when the stock pays a continuous dividend yield at a constant annu-
alised rate of ¢ (see previous exercise).
For any financial asset whose price at time ¢ can be written F(¢,S;) with FF C%2? F satisfies the PDE:

oF oF o? ,0°F
a(t, x) + (r— 5)95%(7&,33) + -2 W(t x) =rF(t,x)

The given function F' corresponds to the price of a European call with maturity 7" and strike price K,
then F satisfies the previous equation, and F(T,x) = (z — K)*.

We have F(t,z) = C(t, xe‘5(T_t)), where C' is the call price funtional when the U.A. pays no dividend.

The call on the stock paying the continuous dividend is equivalent to a call on the portfolio B described

in exercise 25, which is now an underlying asset paying no dividend.

Exercise 27. 1. Cy + Ke T = Py + Sy and Cy = S()N(dl) — KG_TTN(dQ) =
Py = S()N(dl) — KeiTTN(dQ) + Ke T — So = KeiTTN(—dQ) — S()N(—dl).

2. The price at time ¢ can be written F'(¢,.S;) (Markov).
We consider locally a portfolio constituted of -1 option and A; = g—i(t, Sy) U.A..

Let V; be the value of the portfolio at time t: Vi = —F(t,S;) + A¢St.

The variation of the portfolio value between ¢ and ¢ + dt is: dV; = —dF(t,S;) + AdS; with

OF O*F OF
dF(t,S;) = [a (t,S;) + o —— (t, St) (St) dt +a—(t S¢)dS;.

F ’F
Then dV; = — [8875 (t,S) + ?9 5 (L St) (St) ] dt contains terms in d¢ only and none in dB;.
OF
The portfolio is then risk-free (no randomness), then dV; = rVidt = r |—F(t,S;) + %(t, Sy)St| dt.

oF 0’F o?

F
We get the PDE satisfied by F:  —(¢,5:) + 7St — 5 (t,Se) + e (t, St) (S¢)? = rF(t,S;).

0
ot
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It is independent of u, as is the boundary condition.

Option pricing can therefore be done as if investors were risk-neutral, hence the formula.

3. Fy = e—rTE*(Sge(2r—a2)T+20WT)) _ Sge(rJra?)TF(e—@THUWT) _ Sge(r—ﬁ-UQ)T'

OF 0°F 0% OF
4.a. dF(t, St) - [at(t, St) + w(t, St)?(St) dt + %(t, St)dSt
b. From a., the portfolio { ;l SPAUOH is risk-free between t and ¢ + dt for A; = %—g(t, St).
t

Ay is the quantity of UA to be held at time ¢ by the option seller when he wants to be hedged.
The hedging portfolio has to be adjusted dynamically.

AsS, Ayl S,
C. Sy = O'L, then the option volatility is a¢.
Ft Ft

d. For a call, Ay = N(di(¢,5:)) > 0 and
Fy = SiN(di(t,5)) — Ke " TN (dy(t, Sy)) < S;N(dy(t,S;)) = SiAy, then s; > 0.

e. If S, is small, the put has a high probability to be exercised, then its price is close to Ke 7T -8,
and its volatility is low (as S; variations are small compared to Ke """ and to the put price).
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