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1 Notations
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xzf@xhth, Vh=1,...,n
r>T<=zc>Tand x #7
r>T<=">7" Vh=1,..,n
e r € R" and T € R", x - T denotes the scalar product of z and 7.

A is a matrix with m rows and n columns and B is a matrix with n
rows and [ columns, AB denotes the matrix product of A and B.

e H is an x n matrix, tr(H) denotes the trace of H and det(H) denotes
the determinant of H.

z € R" is treated as a row matrix.

e 7 denotes the transpose of z € R™, 27 is treated as a column matrix.

e f is a function from X C R" to R,
f is weakly increasing (or non-decreasing) on X if for all = and

Tin X,
r<T= f(x) < f(T)

f is increasing on X if for all x and 7 in X,
f is strictly increasing on X if for all z and 7 in X,
r<T= f(x) < f(T)

f strictly increasing on X = f increasing on X

f strictly increasing on X = f weakly increasing (or non-decreasing) on X



e X C R"is an open set, f is a function from X to R and =z € X,
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denotes the gradient of f at x, and
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denotes the Hessian matrix of f at x.

e X C R"is an open set, g := (g1, ...

to R™ and z € X,
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denotes the Jacobian matrix of g at x.
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1.1 Continuity

f is a function from X C R" to R.

Definition 1 (Continuous function) f is continuous at T € X if

lim f(z) = f(7)

T—T

f 1s continuous on X if f is continuous at every point T € X.

Exercise 2

1. f is continuous at T € X if and only if for every open ball J of center
f (%) there exists an open ball B of center T such that f(BN X) C J.

2. f is continuous at * € X if and only if for every € > 0 there exists
9 > 0 such that ||z —Z|| < dand z € X = |f(z) — f(T)| < e.

Proposition 3 (Sequentially continuous function) f is continuous at
T € X if and only if f is sequentially continuous at T, that is, for every
sequence (Ty)nen C X such that x, — T, we have that

f(xn) = f(7)

1.2 Differentiability

X C R"is an open set, f is a function from X to R.

Definition 4 (Differentiable function) f is differentiable at T € X if
1. all the partial derivatives of f at T exist,

2. there exists a function Ez defined in some open ball B(0,e) C R™ such
that for every u € B(0,¢),

f@+u) = f(@)+ V(@) ut[lu] Ex(u)

where limEz(u) =0

u—0

f s differentiable on X if f is differentiable at every point T € X.
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Exercise 5 If f is differentiable at =, then f is continuous at 7.

Definition 6 (Directional derivative) Let v € R™, v # 0. The direc-
tional derivative D, f(T) of f at T € X in the direction v is defined as

o FE+t0) — @)

t—0+ t

if this limit exists and it is finite.

Proposition 7 (Differentiable function/Directional derivative) If f is
differentiable at * € X, then for every v € R™ with v # 0,

Dyf(7) = Vf(T)-v

1.3 Compactness

X is a subset of R™.

Proposition 8 (Compact set/Subsequences) X is compact if and only
if for every sequence (x,)nen C X there exists a subsequence (x,, )ken of the
sequence (T, )nen such that (z,, )ren converges to some point T € X.!

Proposition 9 (Compact set) X is compact if and only if it is closed and
bounded.

Definition 10 (Closed set) X is closed if its complement C(X) := R"\ X
1S open.

Proposition 11 (Sequentially closed) X is closed if and only if it is se-
quentially closed, that is, for every sequence (x,)neny C X such that x, — T,
we have

Te X

Definition 12 (Bounded set) X is bounded if it is included in some ball,
that is, there exists € > 0 such that for all x € X, ||z|| < e.

Let (z,)nen be a sequence and (ng)ren be a strictly increasing sequence of natural
numbers. The composed sequence (z,, )ken is a subsequence of the sequence (zp,)nen-.



2 Extreme Value Theorem

Theorem 13 (Extreme Value Theorem/Weierstrass Theorem) Let f
be a function from X C R™ to R. If X is a non-empty compact set and f is
continuous on X, then

e Jux* € X such that f(x*) > f(z) for allx € X, and
o Ju™ € X such that f(z*) < f(x) for al z € X.



3 Karush—Kuhn—Tucker Conditions

In this section, we focus on necessary and sufficient conditions in terms of
first—order conditions for solving a maximization problem with inequality
constraints.

In this section, we assume that

e (' CR"is convex and open,

e the following functions f and g; with j = 1,...,m are differentiable
on C.

f:xeCCR" — f(x) € R and
gi:xeCCR" —ygj(z) eR, Vji=1,...m

Maximization problem

max f(z)
xel (1)
subject to  gj(x) >0, Vji=1,..,m

where f is the objective function, and g; with j = 1,...,m are the con-
straint functions.

The Karush—Kuhn—Tucker conditions associated with problem (1)
are given below

V@) +> AVgi(x) =0
j=1
A\ >0, Vji=1,..m (2)

)\ij(.T) = O, VJ = 1, .., Mm
gi(x)>0,Vji=1...,m

\

where for every j = 1,...,m, \; € R is called Lagrange multiplier associa-
ted with the inequality constraint g;.

Definition 14 Let 2* € C, we say that the constraint j is binding at x* if
gj(z*) = 0. We denote



1. B(z*) the set of all binding constraints at x*, that is
B(z*) = {j =1, .m: g;(s") = 0}
2. m* < m the number of elements of B(z*) and
3. g% :=(gj)jeB(a) the following mapping
g rw € CCR" — g"(2) = (9;(2))jenw) € R™
Theorem 15 (Karush—-Kuhn-Tucker are necessary conditions) Letz*

be a solution to problem (1). Assume that one of the following conditions is
satisfied.

1. Forall j =1,...,m, g; is a linear or affine function.
2. Slater’s Condition :

o forallj =1,....,m, g; is a concave function or g; is a quasi-
concave function with Vg;(x) # 0 for all x € C, and

o there exists T € C such that g;(T) > 0 for all j =1,...,m.
3. Rank Condition : rank Jg*(z*) = m* <n.

Then, there exists \* = (A], ..., AL, ..., Ar) € R such that (x*, \*) satisfies

RERAVE

the Karush—Kuhn—Tucker Conditions (2).

Theorem 16 (Karush—Kuhn—Tucker are sufficient conditions) Suppose
that there erists \* = (A}, ..., A}, ..., A,) € R such that (v*,\*) € C x R}
satisfies the Karush—Kuhn—Tucker Conditions (2). Assume that

1. f is a concave function or [ is a quasi-concave function with

Vf(x)#0 for all x € C, and
2. g; is a quasi-concave function for all j =1,...,m.

Then, x* is a solution to problem (1).



4 Concavity and quasi-concavity

In this section, we assume that C' is a convex subset of R” and f is a function
from C' to R.

Concavity

Definition 17 (Concave function) f is concave if for all t € [0,1] and
for all x and x in C,

flte+ (1 =1)7) > tf(x) + (1 —1)f(2)
Proposition 18 f is concave tf and only if the set
{(z,a) e OxR: f(z) > a}
is a convex subset of R"™. The set above is called hypograph of f.

Proposition 19 C is open and [ is differentiable on C. f is concave if
and only if for all x and T in C,

fl@) < f(@)+V[(z) - (z - T)

Proposition 20 C' is open and f is twice continuously differentiable
on C. f is concave if and only if for all x € C the Hessian matriz Hf (x)
1s negative semidefinite, that is, for all x € C

va(x)vT <0,VveR"

Definition 21 (Strictly concave function) f is strictly concave if for all
t €]0,1[ and for all x and z in C with x # T,
fltz+ (1 —=t)z) > tf(x)+ (1 —1)f(T)

Proposition 22 C is open and [ is differentiable on C. f is strictly
concave if and only if for all x and T in C' with v # Z,

f@) < f(Z)+Vf(Z)-(x—7T)

Proposition 23 C' is open and f is twice continuously differentiable
on C. If for all x € C the Hessian matriz Hf(x) is negative definite, that
18, for all x € C

vHf (z)v" <0, Yo e R", v #£0

then f is strictly concave.



Quasi-concavity

Definition 24 (Quasi-concave function) f is quasi-concave if and only
if for all o € R the set
{zeC: f(z) 2 a}

1s a convex subset of R™. The set above is called upper contour set of f at a.

Proposition 25 f is quasi-concave if and only if for all t € [0,1] and for
all x and x in C,

flte+ (1 =1)z) = min{f(z), f(Z)}

Proposition 26 C is open and f is differentiable on C. f is quasi-
concave tf and only if for all x and T in C,

f@) 2 f(2) = Vf(@) (x—7)=0

Proposition 27 C' is open and [ is differentiable on C. If [ is quasi-
concave and ¥V f(x) # 0 for all x € C, then for all x and T in C with v # Z,

f@) > f(z) = V[f(T) (t—2) >0

Proposition 28 C is open and f is twice continuously differentiable
on C. If f is quasi-concave, then for all x € C the Hessian matriz Hf(z)
is negative semidefinite on KerV f(x), that is, for all z € C

v €R™ and Vf(x) -v=0= vHf(x)v" <0

Definition 29 (Strictly quasi-concave function) f is strictly quasi-concave

if and only if for all t €]0,1[ and for all x and T in C' with x # T,
Stz + (1 = 8)7) > min{f(z), f(7)}
Proposition 30 C is open and f is differentiable on C.
1. If for all x and x in C with x # T,

flz) = f(z) = V[f(z) - (r —2) >0

then f is strictly quasi-concave.
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2. If f is strictly quasi-concave and ¥V f(x) # 0 for all x € C, then for
all x and T in C with x # T,

f(@) = f(T) = V() (z—1)>0

Proposition 31 C' is open and f is twice continuously differentiable
on C. If for all x € C the Hessian matriz Hf (z) is negative definite on
KerV f(z), that is, for all x € C

vER", v#0 and Vf(x) v=0= vHf(z)v" <0
then f is strictly quasi-concave.

Remark 32 We remark that

f linear or affine = f concave = f strictly concave

U 4

f quasi-concave <= f strictly quasi-concave

We remind the definitions and some properties of negative definite/semidefinite
matrices. Let H be a n X n symmetric matrix.

Definition 33
1. H is negative semidefinite if vHHoT < 0 for all v € R".

2. H is negative definite if vHv! < 0 for all v € R™ with v # 0.

Proposition 34
1. H has n real eigenvalues. We denote Ay, ..., \, the eigenvalues of H.
2. H 1s negative semidefinite if and only \; <0 for everyi=1,...,n.
3. H is negative definite if and only \; < 0 for every i =1,...,n.
Proposition 35

1. If H is negative semidefinite, then tr(H) < 0 and det(H) > 0 if n is
even, det(H) < 0 if n is odd.
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2. If H is negative definite, then tr(H) < 0 and det(H) > 0 if n is even,
det(H) < 0 if n is odd.

We remark that if n = 2, then the conditions stated in the proposition
above also are sufficient conditions, that is

1. H is negative semidefinite if and only if tr(H) < 0 and det(H) > 0.

2. H is negative definite if and only if tr(H) < 0 and det(H) > 0.

References

Arrow, K.-J., Hurwicz, L., Uzawa, H., 1958. Studies in linear and non-linear
programming. Stanford University Press.

Cass, D., 2000. Non-linear Programming for Economists. Class Notes, Ph.D.
Program in Economics, University of Pennsylvania.

de la Fuente, A., 2005. Mathematical Methods and Models for Economists.
Cambridge University Press.

Mas-Colell, A., Whinston, M. D., Green, J. R., 1995. Microeconomic Theory.
Oxford University Press.

12



