Université Paris 1 Panthéon-Sorbonne. Ufr 27 Mathématiques et Informatique L1 MIASHS 2019-2020
Fascicule de travaux dirigés de fondement des mathématiques
contact: antoine.mandel@univ-paris1.fr
1

TD 1: Calcul propositionnel

Exercice 1. Soit p la proposition "il fait froid" et q "il pleut." Donner l'énoncé en language naturel des propositions suivantes.:

- 1. $\neg p$
- 2. $p \wedge q$
- 3. $p \lor q$
- 4. $p \Leftrightarrow q$
- 5. $p \Rightarrow \neg q$
- 6. $q \lor \neg p$
- 7. $\neg p \land \neg q$
- 8. $p \Leftrightarrow \neg q$
- 9. $(p \land \neg q) \Rightarrow p$

Exercice 2. Soit p la proposition "ce chien est petit" et q " ce chien est gris." écrire chacune des propositions suivantes sous forme symbolique en utilisant p et q.

- 1. ce chien est petit et gris
- 2. Ce chien est grand et gris
- 3. Il est faux que ce chien soit petit ou gris
- 4. Ce chien est petit ou il est grand et gris
- 5. Ce chien n'est ni vêtit ni gris.

Exercice 4. Déterminer la valeur de vérité des propositions suivantes:

- 1. Si 3 + 2 = 7 alors 4 + 4 = 8
- 2. Il est faux que 2 + 2 = 5 si et seulement si 4 + 4 = 10
- 3. Paris est en Angleterre ou Venise n'est pas en Italie.
- 4. Il est faux que 1 + 1 = 3 ou 2 + 1 = 3
- 5. II est faux que si Paris est en Angleterre alors Londres est en France.

Exercice 5. Déterminer la négation des propositions suivantes:

- 1. Il est grand et beau
- 2. Il n'est ni riche ni heureux
- 3. Si elle vient elle parlera avec toi.
- 4. ni Marc ni Eric ne sont joyeux.
- 5. Si Marc est triste, alors Marie et Jean sont heureux.
- 6. Marc ou Eric sont élégants et Marie est grande.

Exercice 6. Déterminer la table de vérité des propositions suivantes puis déterminer leur négation.

- 1. $\neg(p) \land q$
- $2. \neg (q) \Rightarrow \neg (p)$
- 3. $(p \land q) \Rightarrow (p \lor q)$
- 4. $\neg (p \land q) \lor \neg (p \Leftrightarrow q)$
- 5. $(\neg(p \land q) \Rightarrow r) \Rightarrow (q \land r)$

Exercice 7 Démontrer que les propositions suivantes sont des tautologies (i.e qu'elles sont vraies indépendamment de la valeur de vérité des propositions constituantes):

- 1. $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$
- 2. $(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$
- 3. $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$
- 4. $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$
- 5. $\neg (p \Rightarrow q) \Leftrightarrow p \land \neg q$
- 6. $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$
- 7. $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$

Exercice 8. Démontrer que les propositions suivantes sont des tautologies (si non démontrées en cours):

- 1. Raisonnement par contraposée: $[p \Rightarrow q] \Leftrightarrow [\neg q \Rightarrow \neg p]$
- 2. Raisonnement par l'absurde: $[(p \Rightarrow q) \land \neg q] \Rightarrow \neg p$
- 3. Raisonnement par disjonction des cas: $[(p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow r)] \Rightarrow r$
- 4. Transitivité de l'implication: $[(p\Rightarrow r)\wedge (q\Rightarrow r)]\Rightarrow [p\Rightarrow r]$
- 5. Raisonnement par double implication: $[(p \Rightarrow q) \land (q \Rightarrow p)] \Leftrightarrow [p \Leftrightarrow q]$

Exercice 9. Soit P, Q, R des propositions. Indiquer si les propositions suivantes sont toujours vraies, toujours fausses, ou si leur valeur dépend de celles de P, Q, R.

- 1. $[P \lor (Q \land R)] \land (Q \lor R)$.
- 2. $[Q \Rightarrow P] \land \neg (P \Leftrightarrow Q) \land (R \land \neg P)$.
- 3. $(\neg P \Rightarrow Q) \lor (Q \Rightarrow P)$.

TD 2: Calcul des prédicats

Exercise 1. Déterminer la valeur de vérité des propositions suivantes:

1.
$$\exists x \in \mathbb{R} \ x^2 - 2x + 1 = 0$$

2.
$$\exists x \in \mathbb{R} \ x^2 + x + 1 = 0$$

3.
$$\exists x \in \mathbb{C} \ x^2 + x + 1 = 0$$

4.
$$\forall x \in \mathbb{R} |x| = x$$

5.
$$\forall x \in \mathbb{R}_+ |x| = x$$

6.
$$\exists x \in \mathbb{R} \forall y \in \mathbb{R} \ x \ge y$$

7.
$$\exists x \in \mathbb{R} \exists y \in \mathbb{R} \ x \ge y$$

8.
$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} \ n > x \ \forall x \in \mathbb{R}_+^* \exists n \in \mathbb{N} \ \frac{1}{n} < x$$

Exercise 2. Déterminer la négation des propositions précédentes.

Exercise 3. Soit p(x, y, z) un prédicat sur $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$, déterminer les relations logiques entre les proposition suivantes:

1.
$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \exists z \in \mathbb{R} \ p(x, y, z)$$

2.
$$\exists z \in \mathbb{R} \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ p(x, y, z)$$

3.
$$\forall y \in \mathbb{R} \forall x \in \mathbb{R} \ \exists z \in \mathbb{R} \ p(x, y, z)$$

4.
$$\forall x \in \mathbb{R} \ \exists z \in \mathbb{R} \ \forall y \in \mathbb{R} \ p(x, y, z)$$

Exercice 5. Ecrire les négations des phrases suivantes (on ne demande pas évidemment de simplement faire précéder la phrase d'un \neg):

1.
$$\forall \varepsilon > 0, \exists \ell \in \mathbb{R}_+^*, \forall a \in \mathbb{R}, \exists \tau \in [a, a + \ell], \forall t \in \mathbb{R}, |f(t + \tau) - f(t)| \leq \varepsilon.$$

- 2. Tout triangle rectangle possède un angle droit.
- 3. Pour tout entier x, il existe un entier y tel que pour tout entier z, la relation z < y implique la relation z < x + 1.

Exercice 6. On associe au nombre réel $x \in \mathbb{R}$ la proposition:

$$P(x) := \forall y \in \mathbb{R} \ \exists n \in \mathbb{N} \ x^n \ge y$$

- 1. Donner un exemple de réel $x \in \mathbb{R}$ tel que P(x) soit vraie (justifier votre réponse).
- 2. Déterminer la négation Q(x) de P(x). Donner un exemple de réel $x \in \mathbb{R}$ tel que Q(x) soit vraie (justifier votre réponse).
- 3. Déterminer si les proposition suivantes sont vraies ou fausses (justifier vos réponses):
 - (a) $\exists x \in \mathbb{R} \ P(x)$
 - (b) $\forall x \in \mathbb{R} \ P(x)$
 - (c) $\forall x \ge 1 \ P(x)$
 - (d) $x > 1 \Rightarrow P(x)$
 - (e) $P(x) \Rightarrow |x| \ge \frac{1}{2}$.

Exercice 7. Montrer que l'assertion :

- 1. $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\forall n \geq N$, $\frac{1}{n} \leq \varepsilon$ est vraie.
- $2. \ \exists N \in \mathbb{N}^*, \quad \forall \varepsilon > 0, \quad \forall n \geq N, \quad \tfrac{1}{n} \leq \varepsilon \text{ est fausse}.$

TD 3: Théorie des ensembles

Exercice 1.

Soient $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\},$ et $C = \{3, 4, 5, 6\}.$ Déterminer $A \cup B$, $A \cup C$, $B \cup C$ et $A \cup A$

Exercice 2.

Soient $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}, \text{ et } C = \{3, 4, 5, 6\}.$

- 1. Déterminer $A \cap B$, $A \cap C$, $B \cap C$ and $A \cap A$
- 2. Déterminer $(A \cap B) \cap C$ and $A \cap (B \cap C)$.

Exercice 3.

- 1. $\{1, 2, 3, 4\} \cap \{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \ x = 2y\} = ?$
- 2. $\{x \in \mathbb{N} \mid x \le 40\} \cap (\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \mid x = 3y\} \cap \{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \mid x = 4y\}) = ?$

Exercice 4. Dire si les affirmations ont un sens et sont justes, et si non, les corriger de sortes qu'elles le deviennent :

- 1. $1 \in \{1; 2\}$.
- 2. $1 \subset \{1; 2\}$.
- 3. $1 \in \{\{1\}, 2\}$.
- 4. L'ensemble \emptyset a zéro élément.
- 5. $\emptyset = \{\emptyset\}.$
- 6. L'ensemble $\{\emptyset,\emptyset\}$ a un élément.

Exercice 5. Soit Ω un ensemble et A, B et C trois sous-ensembles de Ω .

- 1. Démontrer que si $A \cup B \subset A$ alors $B \subset A$.
- 2. Démontrer que si $A \cup B = A \cap C$ alors $B \subset A \subset C$.
- 3. Démontrer que si $A \cup B = A \cup C$ et si $A \cap B = A \cap C$ alors B = C.

Exercice 6. Démontrer les propriétés suivantes (sauf celles déjà démontrées en cours)

• Idempotence:

$$A \cup A = A$$

$$A \cap A = A$$

• Associativité:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

• Commutativité:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

• Distributivité

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• Elément neutre

$$A \cup \emptyset = A$$

$$A \cap U = A$$

• Elément absorbant

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

• Lois du complémentaire

$$A \cup A^c = U$$

$$A \cap A^c = \emptyset$$

$$(A^c)^c = A$$

$$U^c = \emptyset$$

• Lois de Morgan

$$(A \cup B)^c = A^c \cap B^c \qquad (A \cap B)^c = A^c \cup B^c$$

Exercice 7. On suppose que U est l'ensemble de tous les ensembles et on pose

$$A = \{ x \in U \mid x \not\in x \}.$$

- 1. Montrer qu'on ne peut avoir $A \in A$.
- 2. Montrer qu'on ne peut avoir $A \not\in A$.
- 3. Qu'en déduisez-vous sur l'ensemble de tous les ensembles ?

TD 4: Théorie des ensembles (suite)

Exercice 1.

Soient $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}, \text{ et } C = \{3, 4, 5, 6\}.$ Déterminer A/B, A/C, B/C and A/A

Exercice 2. Soient A et B deux ensembles. Démontrer que:

- 1. $(A B) \cap B = \emptyset$
- 2. $(A-B) \cap (B-A) = \emptyset$
- 3. $(A-B)\cap (A\cap B)=\emptyset$
- 4. (A B) = (B A) if and only if A = B

Exercice 3 Soient $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ et $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$, and $C = \{3, 4, 5, 6\}$. Déterminer les complémentaires dans U suivants: $A^c B^c C^c (A \cup B)^c$ and $(A \cap C)^c$

Exercice 4 Quel est le complémentaire de l'ensemble des entiers positifs pairs dans l'ensemble des entiers positifs ? Dans l'ensemble des entiers relatifs ?

Exercice 5 Soient A et B deux ensembles. Montrer que

$$A^c - B^c = B - A$$

Exercice 6 Soient A et B deux ensembles tels que $A \cap B = \emptyset$. Montrer que:

$$A \cup B^c = B^c$$

Exercice 7.

- 1. Soit $A = \{0, 1\}$. Déterminer $\mathcal{P}(A)$
- 2. Soit $B = \{x \in \mathbb{R} \mid x^2 = 0\}$. Déterminer $\mathcal{P}(B)$
- 3. Déterminer $\mathcal{P}(\emptyset)$, $\mathcal{P}(\mathcal{P}(\emptyset))$, $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

Exercice 8 Soit E un ensemble tel que $\operatorname{Card} E = n$, où $n \in \mathbb{N}$. Démontrer par récurrence sur n que $\operatorname{Card} \mathcal{P}(E) = 2^n$.

Exercice 9

Soit E un ensemble et \mathcal{Q} un sous-ensemble de $\mathcal{P}(E)$. Montrer que les trois propriétés suivantes sont équivalentes.

- 1. $\forall (A, B) \in \mathcal{Q}^2$, $(A\Delta B \in \mathcal{Q}, A \cap B \in \mathcal{Q})$
- 2. $\forall (A, B) \in \mathcal{Q}^2$, $(A\Delta B \in \mathcal{Q}, A \cup B \in \mathcal{Q})$
- 3. $\forall (A,B) \in \mathcal{Q}^2$, $(A/B \in \mathcal{Q}, A \cup B \in \mathcal{Q})$

N.B: A/B est la différence ensembliste et $A\Delta B$ la différence symétrique de A et $B: A\Delta B:=(A/B)\cup(B/A)$.

Exercice 10. Soient $A = \{a, b\}, B = \{2, 3\}, C = \{3, 4\}$. Déterminer:

- 1. $A \times (B \cup C)$
- $2. \ (A \times B) \cup (A \times C)$
- 3. $A \times (B \cap C)$
- 4. $(A \times B) \cap (A \times C)$

Exercice 11. Représenter dans un repère cartésien l'ensemble:

$$\{x\in\mathbb{R}\mid 1\leq x\leq 4\}\times \{x\in\mathbb{R}\mid -2\leq x\leq 3\}$$

Exercice 12. Démontrer que: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Exercice 13. Donner un exemple de sous-ensemble de \mathbb{R}^2 qui ne soit pas de la forme $A \times B$ où A et B sont des sous-ensembles de \mathbb{R} .

TD 5: Fonctions

Exercice 1 On définit deux fonctions $f, g : [0, 1] \rightarrow [0, 1]$ par:

•
$$f(x) = \begin{cases} 3x & \text{si } x \in [0, \frac{1}{3}] \\ 1 & \text{sinon} \end{cases}$$

•
$$g(x) = \begin{cases} 0 & \text{si } x \in [0, \frac{2}{3}] \\ 3x - 2 & \text{sinon} \end{cases}$$

Déterminer $f \circ g$ et $g \circ f$.

Exercice 2 Déterminer si les applications suivantes sont injectives, bijectives, surjectives.

- $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$
- $q: \mathbb{Z} \to \mathbb{Z}, n \mapsto n-1$
- $h: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x+y, x-y)$

Exercice 3. Soit $f: \mathbb{Z} \to \mathbb{Z}$ définie par $f(n) = n^2$ pour tout $n \in \mathbb{Z}$.

- 1. Déterminer $f^{-1}(\{1\}), f^{-1}(\{1,2\}), f^{-1}(\{1,2,3,4\}).$
- 2. f est-elle injective? surjective? bijective?

Exercice 4. Soit $g: \mathbb{Z} \to \mathbb{N}$ définie par $f(n) = n^2$ pour tout $n \in \mathbb{Z}$.

- 1. Déterminer $g^{-1}(\{1\}), g^{-1}(\{1,2\}), g^{-1}(\{1,2,3,4\}).$
- 2. g est-elle injective ? surjective ? bijective ?

Exercice 5. Soit $h: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 - 4x + 3$ pour tout $x \in \mathbb{R}$.

1. Déterminer $h^{-1}(\{0\}), h^{-1}(\mathbb{R}).$

2. h est-elle injective? surjective? bijective?

Exercice 6. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2 + y$.

- 1. Montrer que f n'est pas injective. En déduire qu'il n'existe pas de fonction $g:\mathbb{R}\to\mathbb{R}^2$ telle que $g\circ f=Id_{\mathbb{R}^2}.$
- 2. Montrer que f est surjective, et que l'application $h: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $h(x,y)=(x,x^2+y)$ est une bijection.
- 3. Trouver une application $g: \mathbb{R} \to \mathbb{R}^2$ telle que $f \circ g = Id_{\mathbb{R}}$.

Exercice 7 Soit $f:A\to B$ et $g:B\to C$ des applications. Montrer que

- $g \circ f$ injective implique f injective.
- $g \circ f$ surjective implique g surjective.

TD 6: Fonctions (suite)

Exercice 1 Soit $f: \mathbb{N}^2 \to \mathbb{N}^*$, $(n,p) \mapsto 2^n(2p+1)$. Montrer que f est une bijection.

Exercice 2 Soit $f:X\to Y$. Montrer que les conditions suivantes sont équivalentes :

- 1. f est injective.
- 2. Pour tous $A, B \in \mathcal{P}(X)$, on a $f(A \cap B) = f(A) \cap f(B)$

Exercice 3 Soient E un ensemble, et A et B deux parties de E. On pose:

$$f: : \mathcal{P}(E) \rightarrow : \mathcal{P}(A) \times : \mathcal{P}(B)$$

 $X \mapsto (X \cap A, X \cap B)$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Donner une condition nécessaire et suffisante sur A et B pour que f soit bijective. Donner dans ce cas la bijection réciproque.

Exercice 4 Déterminer toutes les applications h de $E = \{0, 1, 2, 3, 4\}$ dans lui-même telles que pour tout x, y dans E on ait h(x + y) = h(x) + h(y).

Exercice 5. Donner des exemples de familles d'ensembles indicées par \mathbb{N} , \mathbb{Z} , \mathbb{R} .

Exercise 6. Soit $(D_n)_{n\in\mathbb{N}}$ la famille d'ensembles indicée par \mathbb{N} définie par $D_n=]0,n[$. Déterminer:

- 1. $D_3 \cup D_7$
- $2. \cup_{i \in \mathbb{N}} D_i$
- 3. $D_3 \cap D_{20}$
- $4. \cap_{i \in \mathbb{N}} D_i$

TD 7: Relations

Exercice 1

- 1. Dessiner le graphe des relations suivantes dans $\mathbb{R}:\geq,\leq,>,<$.
- 2. De quell relation binaire dans \mathbb{R} la droite y=x est-elle le graphe?
- 3. Graphiquement, quelle propriété a le graphe d'une relationbinaire dans \mathbb{R} qui est which is réflexive? symétrique? anti-symétrique?

Exercice 2 Soit $X = \{1, 2, 3, 4\}$. Sur X on considère la relation dont le graphe est l'ensemble G suivant : $G = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (3, 4), (4, 2), (4, 3), (4, 4)\}$. Cette relation est-elle réflexive ? symétrique ? anti-symétrique ? transitive ?

Exercice 3

- 1. Donner un exemple de relation à la fois symétrique et anti-symétrique.
- 2. Soit E un ensemble fini ayant n éléments. Combien y a-t-il de relations sur E qui soient à la fois symétriques et anti-symétriques ?

Exercise 4. Les relations suivantes sont elles réflexive? transitive? symétrique? anti-symétrique?

- 1. Dans \mathbb{N} , $a\mathcal{R}b$ si et seulement si a divise b
- 2. Dans $\mathcal{P}(E)$, la relation d'inclusion.
- 3. Dans \mathbb{R} , la relation $x\mathcal{R}$ si et seulement si |x| = |y|
- 4. Dans $\mathcal{P}(E)$, la relation $A\mathcal{R}B$ si et seulement si $A \cap B = \emptyset$

- 5. Dans \mathbb{R} , the relation $x\mathcal{R}y$ si et seulement si u(x) > u(y) où $u : \mathbb{R} \to \mathbb{R}$.
- 6. Dans \mathbb{R} , the relation $x\mathcal{R}y$ si et seulement si $u(x) \geq u(y)$ où $u: \mathbb{R} \to \mathbb{R}$.
- 7. Dans \mathbb{R} , the relation $x\mathcal{R}y$ si et seulement si $u(x) \geq u(y)$ où $u : \mathbb{R} \to \mathbb{R}$ est une fonction croissante.
- 8. Dans $\mathbb{Z} \times \mathbb{N} \{0\}$, la relation $(a, b)\mathcal{R}(c, d)$ si et seulement si ad bc = 0

Exercise 5. Les relations précédentes sont-elles des relations d'équivalence ? Des relations d'ordre ?

Exercise 6. Soient \mathcal{R} et \mathcal{S} deux relations d'ordre totales sur E telles que

$$\forall (x,y) \in E \times E \ x\mathcal{R}y \Rightarrow x\mathcal{S}y$$

Montrer que $\forall (x,y) \in E \times E \ x \mathcal{R} y \Leftrightarrow x \mathcal{S} y$

Exercise 7. Soit $\pi(E)$ l'ensemble des partitions de E et \mathcal{R} la relation dans $\pi(E)$ définie par

$$\pi_1 \mathcal{R} \pi_2 \Leftrightarrow \forall P_1 \in \pi_1 \exists P_2 \in \pi_2, P_1 \subset P_2.$$

Montrer que \mathcal{R} est une relation d'ordre. Quels sont les éléments minimaux et maximaux de \mathcal{R} ?

Exercise 8. Soit E un ensemble ordonné tel que tout sous ensemble majoré de E admet une borne supérieure. Montrer que tout ensemble minoré de E admet une borne inférieure.

TD 8: Nombres entiers

On rappelle les axiomes de Peano:

Axiome: 1 (de Peano) Il existe un ensemble appelé ensemble des entiers naturels est noté \mathbb{N} , un élément $0 \in \mathbb{N}$ appelé zéro et une application $s : \mathbb{N} \to \mathbb{N}$ appelée successeur, vérifiant les propriétés suivantes:

- 1. $0 \notin s(\mathbb{N})$ (0 n'est le successeur d'aucun entier).
- 2. s est injective (deux entiers ayant le même successeur sont égaux)
- 3. Si $A \subset \mathbb{N}$ est telle que $0 \in A$ et $\forall n \in A$ $s(n) \in A$ alors $A = \mathbb{N}$ (principe de récurrence).

Exercice 1 Quels axiomes de Peano l'ensemble $\{0, 1, 2, 3\}$, muni de la fonction successeur s définie par s(0) = 1, s(1) = 2, s(2) = 3 et s(3) = 0 ne vérifie-t-il pas ?

Exercice 2

Donner un exemple d'ensemble muni d'une fonction successeur qui vérifie tous les axiomes de Peano sauf l'axiome de récurrence.

Exercice 3 Monter que tout entier est pair ou impair, i.e que

$$\forall n \in \mathbb{N} \ \exists p \in \mathbb{N} \ (n = 2 * p \lor n = 2 * p + 1)$$

Exercice 4

- 1. En considérant l'ensemble des entiers multiples de $a \ge 1$ et $b \ge 1$, montrer que ppcm(a,b) existe
- 2. Démontrer que ppcm(a, b) est unique.

Exercice 5 Montrer qu'il existe une infinité de nombre de premiers. N.B on pourra considérer P! + 1 si P est le plus grand nombre premier.

Exercice 6 Soient a = 2088 et b = 504, donner la décomposition en facteurs premiers de a et b puis leur pgcd et ppcm.

Exercice 7 Soit $n \ge 1$,. Déterminer le reste dans la division euclidienne par n de la somme des n premiers entiers.

Exercice 8

Démontrer que la somme de trois cubes consécutifs est toujours divisible par 9.

TD 9: Nombres réels

Exercice 1

Déterminer l'écriture décimale de la fraction 2/7 et vérifier qu'elle devient périodique.

Exercice 2 Déterminer la fraction correspond au développement décimal 22, 75 358 358 358....

Exercice 3

- 1. Montrer que pour tout réel x et pour tout rationnel y, x est rationnel si et seulement si x + y est rationnel.
- 2. En déduire que l'ensemble $\{y+\sqrt{2},\ y\in\mathbb{Q}\}$ est infini.
- 3. En déduire que l'ensemble des irrationnels est infini.

Exercice 4 Déterminer lorsque cela est possible les bornes inférieures et supérieures, ainsi que les maxima et minima des sous-ensembles de $\mathbb R$ suivants :

$$A_1 = [-1, 3]; A_2 =]-12, -3] \cup \{1\}; A_3 = \left\{\frac{1}{n} + (-1)^n, n \in \mathbb{N}^*\right\} \text{ et } A_4 = \left\{\frac{\ln(x)}{x}, x > 0\right\}.$$

Exercice 5 Soit A une partie non vide de \mathbb{R} , on pose $B = -A := \{b \in \mathbb{R} \mid \exists a \in A, b = -a\}$, c'est-à-dire $b \in B$ si et seulement si $-b \in A$.

- Montrer que A est majoré si et seulement si B est minoré. Montrer que A est minoré si et seulement si B est majoré.
- Montrer que γ est un minorant de A si et seulement si $-\gamma$ est un majorant de B.

• En déduire (en se basant sur l'axiome de la borne supérieure) que si A est minoré, l'ensemble des minorants de A poss $\ddot{\mathrm{E}}$ de un plus grand élément qui sera noté $\inf(A)$. Montrer que $\inf A = -\sup B$.

Exercice 6 Soit A une partie non vide de \mathbb{R} , dont la borne inf vaut α . On suppose que $\alpha \notin A$, montrer que A ne possède pas de plus petit élément.

Exercice 7

- 1. Donner un exemple de sous-ensemble borné de $\mathbb R$ n'ayant pas de plus grand élément.
- 2. Existe-t-il des sous-ensembles finis de \mathbb{R} n'ayant pas de borne inférieure?
- 3. Donner un exemple de sous-ensemble infini et dénombrable de \mathbb{R} n'ayant pas de borne inférieure.
- 4. Donner un exemple de sous-ensemble infini et dénombrable de \mathbb{R} ayant une borne inférieure.
- 5. Donner un exemple de sous-ensemble infini et dénombrable de $\mathbb R$ ayant un plus petit et un plus grand élément

TD 10: Nombres réels (suite)

Exercice 1 Soit A et B deux parties non vides de \mathbb{R} telles que : $\forall (a,b) \in A \times B$, $a \leq b$. Démontrer que sup A et inf B existent et que sup $A \leq \inf B$.

Exercice 2 Soit A et B deux parties majorées et non vides de \mathbb{R} . On définit $A+B=\{a+b,(a,b)\in A\times B\}$. Montrer que A, B, A+B admettent des bornes supérieures dans \mathbb{R} et que

$$\sup(A+B) = \sup(A) + \sup(B).$$

Exercice 4

- 1. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ définie pour tout $x \in \mathbb{R}$ par $f(x) = \frac{x}{x+1}$, déterminer $\inf_{\mathbb{R}_+} f$ et $\sup_{\mathbb{R}_+} f$.
- 2. Soit $g: \mathbb{R}/\{-2\} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = \frac{x}{x+2}$, déterminer $\inf_{\mathbb{R}} g$ et $\sup_{\mathbb{R}} g$.
- 3. Soit $h : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $h(x) = \sin(e^x)$, déterminer $\inf_{\mathbb{R}} h$ et $\sup_{\mathbb{R}} h$.
- 4. Soit $k : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $k(x) = \tan(x^2)$, déterminer $\inf_{\mathbb{R}} k$ et $\sup_{\mathbb{R}} k$.

Exercice 4 Soit X un ensemble non vide et f et g deux applications bornées de X dans \mathbb{R} . Comparer $\sup_X (f+g)$ et $\sup_X f + \sup_X g$. Donner un exemple où l'inégalité est stricte. Montrer que $\sup_X (f-g) \geq \sup_X f - \sup_X g$. A-t-on $\sup_X (f-g) \geq |\sup_X f - \sup_X g|$

Exercice 5 Soit A, B et C trois ensembles de réels, non vides et bornés, et soit f et g des applications bijectives telles que $f:A\to B$ et $g:B\to C$. Déterminer $\sup g\circ f$ en fonction de $\sup f$ et $\sup g$.

Exercice 6 Soient $x, y \in \mathbb{R}$, Démontrer les inégalités suivantes:

1.
$$|x| + |y| \le |x + y| + |x - y|$$

2.
$$1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|)$$

3.
$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$$