2016/2017

Interrogation de fondements des mathématiques

(durée 120 minutes, recto verso)

Exercice 1 Soient p et q des propositions. Donner la table de vérité de la proposition $(p \lor q) \Rightarrow (p \Rightarrow q)$

Corrigé : voir cours.

Exercice 2 Les propositions suivantes sont-elles vraies ou fausses? (justifier vos réponses)

- 1. $\exists z \in \mathbb{R} \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ z \in [x, y]$
- 2. $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \exists z \in \mathbb{R} \ z \in [x, y]$
- 3. $\forall x \in \mathbb{R} \ \exists z \in \mathbb{R} \ \forall y \in \mathbb{R} \ z \in [x, y]$

Corrigé : 1. et 3. sont fausses, il suffit de prendre y < z pour le montrer. Pour 2, si x < y, on peut prendre z = (x + y)/2. P.S L'énoncé était ambigu sur le fait que y < x.

Exercice 3 Soient A,B,C trois ensembles. Démontrer les propriétés suivantes :

- 1. $A \subset B \Leftrightarrow B^c \subset A^c$
- 2. Si $A \cup B = B \cap C$ alors $A \subset B \subset C$.
- 3. Si $A \cap B = A \cap C$ et $A \cup B = B \cup C$ alors B = C.

Corrigé:

- 1. Appliquer la définition.
- 2. $A \cup B = B \cap C$ implique $A \cup B \subset B$ et donc $A \subset B$. On a donc $A \cup B = B$, d'où $B \subset B \cap C$ et donc $B \subset C$.
- 3. voir TD

Exercice 4 Soit A et B deux ensembles et $f: A \to B$. On définit alors l'application $F: \mathcal{P}(A) \to \mathcal{P}(B)$ par :

$$\forall X \subset A, \ F(X) = f(X)$$

Montrer que f est injective si et seulement si F est injective. Corrig'e :

- Si F est injective, on a $f(a) = f(b) \Rightarrow F(\{a\}) = F(\{b\}) \Rightarrow \{a\} = \{b\} \Rightarrow a = b$.
- Réciproquement, si F non injective, Soit $A \neq B$ tel que F(A) = F(B). Comme $A \neq B$, il existe $x \in A, x \notin B$ (ou réciproquement). On a néanmoins $f(x) \in f(A) = f(B)$. DOnc, il existe $y \in B$ tel que f(x) = f(y) et donc f est non injective.