2016/2017

Interrogation de fondements des mathématiques

(durée 120 minutes, recto verso)

Exercice 1 Soient p et q des propositions. Donner la table de vérité de la proposition $(p \lor q) \Rightarrow (p \Rightarrow q)$

Exercice 2 Les propositions suivantes sont-elles vraies ou fausses? (justifier vos réponses)

- 1. $\exists z \in \mathbb{R} \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ z \in [x, y]$
- 2. $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \exists z \in \mathbb{R} \ z \in [x, y]$
- 3. $\forall x \in \mathbb{R} \ \exists z \in \mathbb{R} \ \forall y \in \mathbb{R} \ z \in [x, y]$

Exercice 3 Soient A,B,C trois ensembles. Démontrer les propriétés suivantes :

- 1. $A \subset B \Leftrightarrow B^c \subset A^c$
- 2. Si $A \cup B = B \cap C$ alors $A \subset B \subset C$.
- 3. Si $A \cap B = A \cap C$ et $A \cup B = B \cup C$ alors B = C.

Exercice 4 Soit A et B deux ensembles et $f: A \to B$. On définit alors l'application $F: \mathcal{P}(A) \to \mathcal{P}(B)$ par :

$$\forall X \subset A, \ F(X) = f(X)$$

Montrer que f est injective si et seulement si F est injective.

Exercice 5 Les relations suivantes sont-elles des relations d'ordre sur \mathbb{R} ? Si oui, sont-elles totales ?

- 1. $x\mathcal{R}y$ définie par $x^4 \ge y^4$
- 2. xSy définie par $f(x) \geq f(y)$ où $f: \mathbb{R} \to \mathbb{R}$ est strictement croissante.
- 3. xTy définie par $g(x) \geq g(y)$ où $g: \mathbb{R} \to \mathbb{R}$ est bijective.
- 4. xUy définie par $x \ge y 1$

Exercice 6 Déterminer, si ils existent, les minimas, maximas, bornes supérieures et inférieures des sous-ensembles suivants de \mathbb{R} .

- 1. $A = \mathbb{Q}$
- $2. \ B = \mathbb{N}$
- 3. C =]-1,3[
- 4. $D = \{ \frac{1}{n^2 + n + 1} \mid n \in \mathbb{N} \}$
- 5. $E = \{x^3 \exp(-x) \mid x \in \mathbb{R}\}$