2018/2019

Université Paris 1 Panthéon-Sorbonne

Examen de fondements des mathématiques, session de Janvier 2019

(durée: 120 minutes, justifier toutes vos réponses)

Exercice 1 Donner la négation des propositions suivantes.

- 1. $p \Rightarrow (q \Rightarrow \neg p)$
- 2. $p \lor (q \Rightarrow r)$
- 3. $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ \forall z \in \mathbb{R} \ x + y > z$

Exercice 2 Soient A et B deux ensembles.

- 1. Démontrer que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$
- 2. Démontrer que $\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$
- 3. Donner un exemple où l'inclusion précédente est stricte.

Exercice 3 Les sous-ensembles de \mathbb{R} suivants admettent-ils une borne supérieure? un plus grand élément? Si oui, les déterminer.

- 1. A = [0, 1]
- 2. $B = [0, 2] \cup \{3\}$
- 3. $C = [0, +\infty[$
- 4. $D = \{1 \frac{1}{n} \mid n \in \mathbb{N}^*\}$
- 5. $E = \{ \frac{x^2}{x^2 + 1} \mid x \in \mathbb{R} \}$

Exercice 4 Soit A une partie non vide, majorée et minorée de \mathbb{R} . On pose

$$B = \{|x - y| \mid (x, y) \in A \times A\}$$

- 1. Justifier l'existence de $\sup A$ et $\inf A$.
- 2. Montrer que B est bornée. En déduire que sup B existe.
- 3. Montrer que sup $B \leq \sup A \inf A$
- 4. Montrer que sup $B = \sup A \inf A$