

Université Paris 1 Panthéon Sorbonne,

graphie 🖆

NE Institut de démographie

Chapitre 11

par Alexandre Avdeev, (IDUP); avec la contribution et participation de Jitka Rychtaříková (DDG, Université Chartes à Prague) et Irina Troitskaia (Université d'État Lomonosov à Moscou, Faculté d'économie)

Modèles de croissance et de la structure de population par âge

- · Modèles de croissance
 - un aperçue historique de la notion de population
 - une idée générale : population est une fonction mathématique ;

Cours d'analyse démographique niveau 2 : Master de démographie

- la croissance exponentielle comme une loi générale de croissances démographique :
- limites de croissance et une idée de la croissance logistique
- · Modèles de structures
 - la table de mortalité comme un modèle d'une population stationnaire (idéal des utopistes)
 - population stable comme un modèle général d'évolution de la structure par âge

Lecture:

- <u>Jean Bourgeois-Pichat</u> *La dynamique des populations: populations stables, semi-stables et quasi-stables.* Cahier de l'INED "Travaux et documents" n°133, Paris, PUF, 1994, 311 p.
- Samuel H. Preston, Patrick Heuveline and Michel Guillot Demography. Measuring and Modeling Population Processes. Blackwell Publishing, 2000, p138-190
- Henry Leridon et Laurent Toulemon, Démographie. Approche statistique et dynamique des populations. Economica, Paris, 1997, p.32-74
- Léon Tabah "Relationships between age structure, fertility, mortality and migration. Population replacement and renewal". United Nations World Population Conference. Beograd, 1965. Background paper B.7/15/E/476
- Brian Charlesworth Evolution in age-structured population. Cambridge. 1980, Cambridge University Press, 300 p.
- <u>Altred Lotka</u> Théorie analytique des associations biologiques. I. Principes (1934); II. Analyse démographique avec application particulière à l'espèce humaine (1939), Hermann, Paris
- On-line manual: Population Analysis for Policies & Programmes. IUSSP https://papp.iussp.org/index.html

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)

1

I. Modèles de croissance

Aperçu historique (rappel):

population comme un nombre ou

une fonction

2

L'apparition du mot et de la notion « population »

ESSAYS

1625 – invention du mot « population » par Sir Francis Bacon (22.01.1561–09.04.1626).

dans "Essayes or Counsels, Civill and Morall" (avec 58 essais) publié en 1625
(c'est la troisième édition, la première "Essayes: Religious Meditations. Places of Perswasion and Disswasion. Seene and Allowed " a été publiée en 1597 avec 10 essais, la 2° en 1612 avec 38 essais),

Essai XV : « Of Seditions and Troubles » [« Sur excitation à la rébellion et troubles »] :

"Generally, it is to be foreseen that **the population** of a kingdom (especially if it be not mown down by wars) do not exceed the stock of the kingdom which should maintain them. Neither is the population to be reckoned only by number; for a smaller number that spend more and earn less do wear out an estate sooner than a greater number that live lower and gather more. Therefore the multiplying of nobility and other degrees of quality in an over proportion to the common people doth speedily bring a state to necessity; and so doth likewise an overgrown clergy; for they bring nothing to the stock; and in like manner, when more are bred scholars than preferments can take off."

 $\textbf{Texte complet est accessible sur} \underline{: http://www.authorama.com/essays-of-francis-bacon-16.html} \\$

« Généralement on doit veiller que <u>la population</u> d'un Royaume, (spécialement si elle n'est pas fauchée par les guerres) n'excède pas les ressources du royaume nécessaires à leur entretien. Aucune population ne doit être évaluée uniquement par son nombre, puisque celle moins nombreuse qui dépense plus et gagne moins épuise l'Etat plus rapidement que celle nombreuse qui vive plus modestement et thésaurise davantage. Par conséquent, la multiplication de la noblesse et d'autres états de qualité dans une proportion élevée par rapports aux gens communs doit amener un Etat dans le besoin; de même pour le surcroit du clergé qui n'apporte rien, et aussi quand le nombre des gens lettrés dépasse le nombre de places que le service peut leur offrir ».

Cependant, dans les premières éditions françaises ce mot a été traduit en peuple ou monde.

Les contemporains de F.Bacon: *Galileo Galilei* (1564-1642), Italie, *René Descartes* (1596-1650), France, Tommaso Campanella (1568-1639) Italie-France

3

3

L'Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers est une encyclopédie française,

éditée de 1751 à 1772 sous la direction de Denis Diderot et, partiellement, de Jean Le Rond d'Alembert

Tom 13, 1765-12, Pomacies – Reggio

Jean Le Rond d'Alembert né le 16 novembre 1717 à Paris où il est mort le 29 octobre

POPULATION, s. f. (Phys. Polit. Morale.) ce mot est abstrait, pris dans l'acception la plus étendue, il exprime le produit de tous les êtres multipliés par la génération ; car la terre est peuplée non-seulement d'hommes, mais aussi des animaux de toutes espèces qui l'habitent avec eux. La reproduction de son semblable est dans chaque individu le fruit de la puissance d'engendrer ; la population en est le résultat. Mais cette expression s'applique plus particulièrement à l'espèce humaine ; & dans ce sens particulier, elle désigne le rapport des hommes au terrain qu'ils occupent, en raison directe de leur nombre & inverse de l'espa

Étienne Noël Damilaville, né à Bordeaux le 21 novembre 1723 et mort le 13 décembre 1768,

« Analyse et modèles démographiques » par A.Avdeev (IDUP)

4

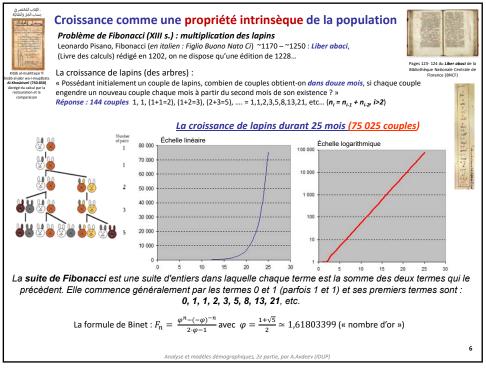
La stabilité est une règle, la croissance est une anomalie

Dans l'Antiquité: un nombre est une quantité fixe

<u>Platon (428-348 av.J.-C.)</u> dans La République et Les Lois imagine une population stationnaire (5040 familles, ~20 000 citoyens libres) et une politique qui maintient cette stationnarité

Les mêmes idées sont retenues et développées par :

- Aristote (384-322 av.J.-C.), La Politique
- <u>Sir Thomas More (1478-1535)</u>
 Utopia, 1518, Londres (en latin), traduction
 française en 1550 à Paris: l'Utopie ou le traité de la
 meilleure forme de gouvernement
- <u>Tommaso Campanella</u> (1568-1639)
 Civitas solis, 1623, Francfort, (appendice à la Philosophia realis). Traduction française en 1841



Gravure de Ambrosius Holbein pour une édition de 15 Dans le coin en bas à gauche le voyageur Raphael Hythlodaeus décrivant l'île.

nalyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)

5

5

La Survie des humains est gérée par une loi (divine)

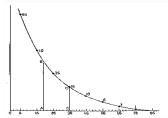
DIGESTORUM SEU PANDECTARUM / LIBER TRIGESIMUSQUINTUS / TITULUS II.

AD LEGEM FALCIDIAM: 68. Aemilius- Macer au liv.2 sur la Loi du vingtième des successions

« Ulpien prescrit la méthode suivante pour calculer les alimens faits à quelqu'un. Les alimens laissés à quelqu'un depuis le bas âge jusqu'a vingt ans sont réputés devoir durer trente ans, et on retient sur ces alimens la Falcidie en conséquence de ce calcul. Etc. »

> Domitius Ulpianus, juriste romain, 170—228

Âge du bénéficiaire	Durée de l'usufruit
0-19	30
20-24	28
25-29	25
30-34	22
35-39	20
40-49	(60-x-1)
50-54	9
55-59	7
60-	5


« Analyse et modèles démographiques » par A.Avdeev (IDUP)

1662 – **John Graunt**, citoyen de Londres publie

Natural and Political Observations Mentioned in a following Index and made upon the Bills of Mortality

Viz. of 100 there dies

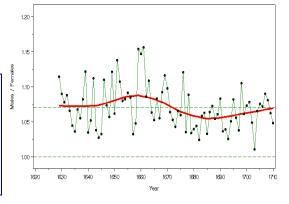
Within the first six years	36	The fourth	6
The next ten years, or Decad	24	The next	4
The second Decad	15	The next	2
The shaid Deced		The next	

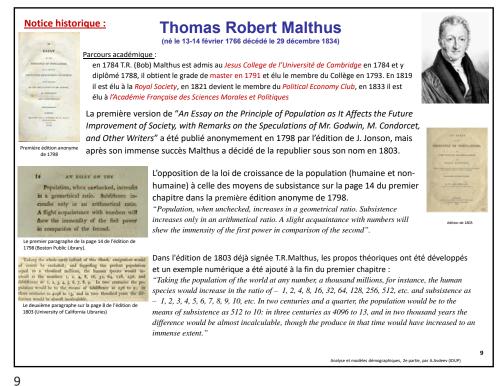
1669 Christiaan Huygens (1629-1695), Netherlands La première représentation graphique de la fonction de distribution continue: la table de mortalité de John Graunt avec la démonstration comment peut-on trouver la durée médiane de vie après avoir atteint un âge donné

7

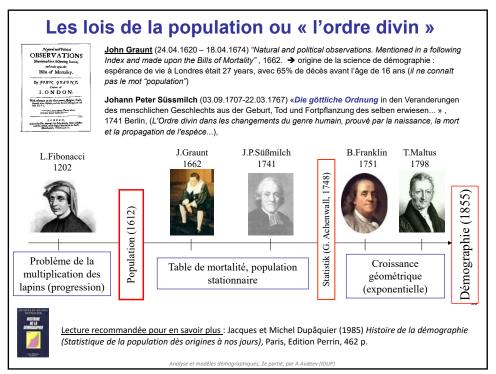
Rapport des sexes: une découverte de première importance

1711 - John Arbuthnot (1667-1735), Ecosse.




Il a réalisé le premier test statistique de signification (la différence entre les observations et une hypothèse « nulle ») pour démontre « the guiding hand of a divine » qui maintenait un rapport des sexe à la naissance presque constant à Londres en 1629-1710

Cette priorité est cependant contestée au profit de J.P.Süssmich, auteur de « L'ordre divine... » paru 40 ans après:


«Le pasteur Süssmilch a été le premier à tenter de traiter systématiquement la question du taux de masculinité, et il a introduit à ce sujet le constat que «pour 1000 fillettes nées, il vient 1050 garçons», une formule promise au succès parmi les démographes malgré ses problèmes évidents»

Source: Wikipeadia avec une référence à « Le sexisme de la première heure. Hasard et sociologie », Éric Brian et Marie Jaisson, *Raisons* d'agir, 2007, page 22

_

John Graunt, John Arbuthnott, and the human sex ratio. Campbell RB.

Notice historique

Source

Department of Mathematics, University of Northem Iowa, Cedar Falls 50614-0506, USA.

Ahstrac

John Graunt was the first person to compile data that showed an excess of male births over female births. He also noticed spatial and temporal variation in the sex ratio, but the variation in his data is not significant. John Arbuthnott was the first person to demonstrate that the excess of male births is statistically significant. He erroneously concluded that there is less variation in the sex ratio than would occur by chance and asserted without a basis that the sex ratio would be uniform over all time and space.

http://www.ncbi.nlm.nih.gov/pubmed/11512687

Hist Sci Med. 1996;30(4):459-66.

[Dr. John Arbuthnot, inventor of statistical testing].

[Article in French]

Bouckaert A.

Abstract

John Arbuthnot, Queen Anne's medic was very fond of probabilities and statistics expectations. Showing a great interest to new born's sex forecast, he devised a new way: the statistics. Then, he ruled out the case according to uncertain fluctuations connected with an average of 50% male births the excess of male births during 82 years in London. In that mind, he forged ahead to demonstrate Providence deed.

http://www.ncbi.nlm.nih.gov/pubmed/11625046

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

11

11

Notice historique

John Graunt (né le 24 avril 1620, mort le 18 avril 1674) était un riche mercier londonien, surtout connu pour avoir été avec son ami William Petty l'un des premiers démographes. Il analysa les registres de mortalité de la ville et se livra à la première estimation de la population d'une ville sur des bases statistiques. Le premier ouvrage de statistique et de démographie publié en 1662: les Observations Naturelles et Politiques... sur les Bulletins de Mortalité... « Les bulletins de mortalité de Londres comptent parmi les premiers relevés démographiques.

« Graunt, lui, établit, chiffres à l'appui, qu'il y a un léger excédent masculin à la naissance et au décès; que Londres peut contenir 380 000 habitants, mais pas des millions; que Paris est plus peuplé que Londres; que les décès dus aux épidémies de peste sont compensés en deux ans; que, malgré les mortalités exceptionnelles, la population de l'Angleterre ne cesse de croître, et celle de Londres encore plus vite; que la mortalité est plus forte à Londres qu'en province et que la population londonienne n'augmente que grâce à une importante immigration; que la folie et la syphilis tuent beaucoup moins qu'on le dit, etc. »

Vilquin Éric. « Une édition critique en français de l'œuvre de John Graunt (1620-1674). Présentation d'un ouvrage hors collection de l'INED ». In: *Population*, 33e année, n°2, 1978 pp. 413-423.

William Petty (économiste, scientifique, médecin, philosophe, homme d'affaires, membre du parlement et de la Société Royale britannique), né 1623 et mort 1687, est surtout connu pour son ouvrage sur l'arithmétique politique, qui pose les bases de l'économie politique et de la démographie en quelque sorte de l'économétrie, en proposant l'utilisation des statistiques en matière de gestion publique. Ami de John Graunt, il lui avait suggéré l'idée de faire des recherches très ingénieuses sur les bulletins de mortalité sur Londres.

Thomas Robert Malthus, né 1766 et mort 1834, est un économiste britannique de l'École classique, et également un pasteur anglican. La population s'accroit de manière géométrique alors que les biens ne s'accroissent que de manière arithmétique.

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

12

Modèles de croissance

Population moyenne

13

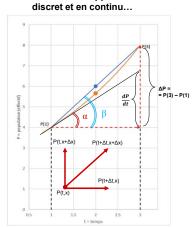
Principes de modélisation de la croissance (de la variation)

Problème 1 : comment estimer l'effectif de la population entre les dates d'observation (i.e. entre deux recensements)?

Problème 2 : comment prévoir la croissance de l'effectif à partir des observations historiques (série des données disponibles) ?

Observations:

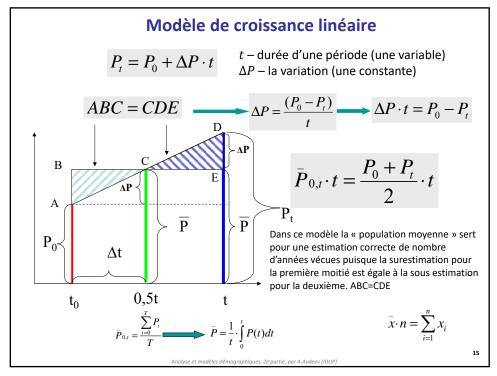
l'accroissement de la population ΔP sur l'intervalle de temps Δt

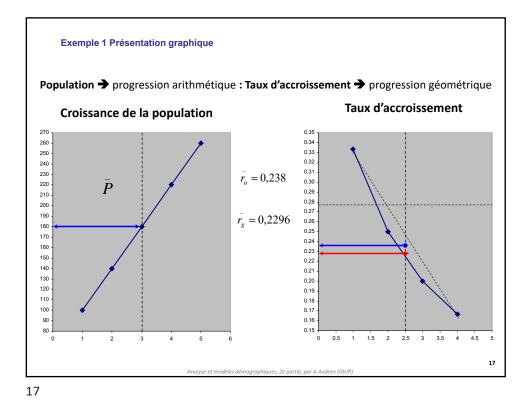

$$\frac{P(3) - P(1)}{t(3) - t(1)} = \frac{\Delta P(t)}{\Delta t} \rightarrow \lim_{\Delta t \to 0} \frac{\Delta P(t)}{\Delta t} = P'(t) = \tan \beta$$

$$r = \lim_{\Delta \to 0} \frac{\Delta P(t)}{P(t) \cdot \Delta t} = \frac{P'(t)}{P(t)} = \left[\ln P(t)\right]' \quad \to P(t) = e^{r \cdot T}$$

Soit ${m P}({m t})$ – la fonction de l'effectif de la population

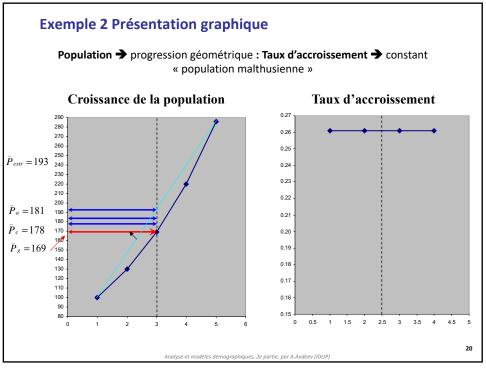
le taux d'accroissement s'exprime alors comme suit $r=rac{dP}{dt}$


Soit P(t,x) – la fonction de l'effectif de la population de t – période (temps universel) et de x – âge étant temps individuel que l'on peut écrire sous forme générique P=f(t,x)


La croissance : approche en

Donc la population varie dans la dimension t avec x constante comme suit : $r_t = \frac{dP(t,x)}{dt} \cdot \frac{1}{P(t,x)}$

dans la dimension ${\bf x}$ avec ${\bf t}$ constante comme suit : $r_{\bf x}=\frac{dP(t,x)}{dx}\cdot\frac{1}{P(t,x)}$. La variation de la population devient donc : $dP(t,x)=\frac{dP(t,x)}{dt}dt+\frac{dP(t,x)}{dx}dx$, etc. pour le développement voir EDM, p.111-115


	Période	Population au début de période	Population moyenne	Taux d'accroissement (variable décroissante)	Accroissement (constant)
	t	P _t	P _{t,t+1}	$r = (P_{t+1} - P_t)/P_{t,t+1}$	$\Delta P = (P_{t,t+1}) \times r$
	0	100	120	0,3333	40
	1	140	160	0,2500	40
	2	180	200	0,2000	40
	3	220	240	0,1667	40
	4	260			
	Total	900	720	0,9500	160
	Moyenne sur 5(4)	180	180	0,2375	
•	ne chronologique ne sur extrémités	180 180		0,2500	
	nne géométrique	180		0,2295	
$P_{0,T} =$	$\frac{000}{5} = 180$ $260 - 100$ $0,1667)/2 = 0,2$	$0 = 160$ Δt	$P_{0,T} = \sum_{t=0}^{T-1} \bar{P}_{t}$	$ \frac{1}{2}r_{t} = \frac{0.5 \cdot (100 + 260)}{4} $ $ \frac{1}{2}r_{t} \cdot r_{t} = 160 (180 - 120)^{*} (18$	$\frac{0) + 540}{100)/120 = 0,333}$ $\frac{140)/160 = 0,2500}{0,3333 = 40}$ $\frac{4 = 0.2375}{0.3337 = 100}$

Populations « malthusiennes » : croissance non linéaire avec un taux accroissement constant $P_t = P_0 \cdot \left(\frac{P_\tau}{P_0}\right)^{\frac{t}{\tau}} \text{ où }$ $P_t = P_0 \cdot \left(\frac{P_\tau}{P_0}\right)^{\frac{t}{\tau}} = (1+r);$ $P_0 = P_0 \cdot \left(\frac{P_\tau}{P_0}\right)^{\frac{1}{\tau}} = (1+r);$ $P_0 = P_0 \cdot \left(\frac{P_0 \cdot P_0}{P_0}\right)^{\frac{1}{\tau}} = (1+r);$ $P_0 = P_0 \cdot \left(\frac{P_0 \cdot P_0}{P_0}\right)^{\frac$

9

		Période	Population au début de période	Population moyenne	Taux d'accroisse	ement	Accroissement
		t	P _t	P _{t,t+1}	r = (Pt+1 Pt)/F	Pt,t+1	$\Delta P = (Pt,t+1) \times r$
		0	100	115	Le taux est constant	0,2609	30
		1	130	149,5	puisqu'il ne vient pas de l'effectif,	0,2609	39
		2	169	194,4	mais des qualités	0,2609	50,7
		3	219,7	252,7	des individus dont une population est	0,2609	65,91
		4	285,6		composée		
		Total	904,31	711,5		1,0435	185,61
	Мо	yenne sur 5(4)	180,9	177,88		0.2609	
	Moyenne d	chronologique	177,9				
		sur extrémités	192,8	183,83			
	Moyenn	e géométrique	169,0			0.2609	
Ī	$\overline{g}_5 = \frac{904,3}{5}$	$\frac{31}{}$ = 180,9	$\bar{P}_4 = \frac{711,5}{4}$	$=177,88 \bar{P_{ci}}$	$h_h = \frac{0.5 \cdot (100 + 1)}{100 + 1}$	4	$\frac{()+518,7}{()}=177,88$
Δ <i>I</i> : 1	$P_{0,T} = 285$ 30/100=1,3 $P_{0+130}/2=1$	6,6-100=1	185,61	$\Delta P_{0,T} = \sum_{t=0}^{T-1} \bar{P}_t \cdot$	$r_t = 185,61$		$\left \frac{\sum_{t=0}^{T} \ln(P_t)}{T} \right = 16$
131)-100)/115=	0,2609; (169-	130)/149,5=0,2609	$P_g = I / I I P_t$	$=169 P_g$	= exp	$\frac{t=0}{T}$ $= 169$

Mesurer la croissance d'une population : approche générale

1. Modèle avec le temps discret : Soit P(t) – effectif d'une population au moment t, alors

$$P(t) = k \cdot P(t-1)$$
 où k – taux de croissance,

si $k > 1 \rightarrow la$ population croît, si $k = 1 \rightarrow la$ population ne change pas, et si k < 1 la population diminue

Soit **P(0)** – effectif initial d'une population au moment **t=0**, alors dans **t** quantités de temps on aura:

$$P(t) = k \cdot k \cdot k \cdot \dots \cdot k \cdot P(0) = P(t) = k^{t} \cdot P(0)$$

$$\tag{1}$$

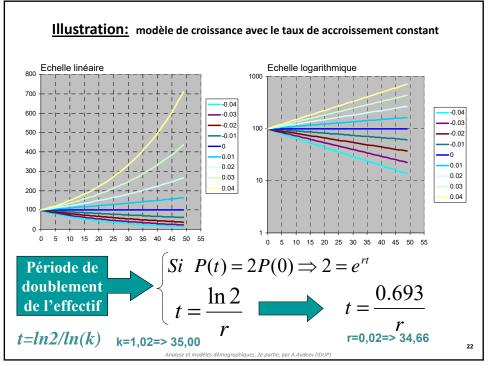
si $r > 0 \rightarrow$ la population s'accroit, 2. Modèle avec le temps continu : si $r = 0 \rightarrow$ la population ne change pas, et si r < 0 la population diminue

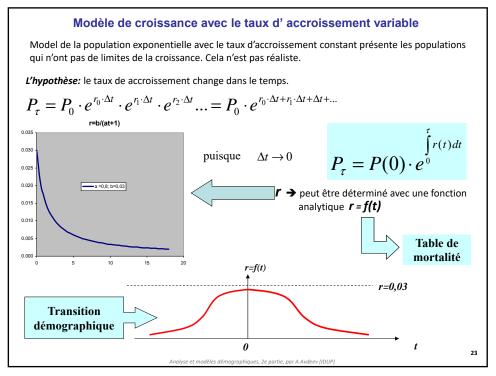
En intégrant par t on obtient : $P(t) = e^{rt} \cdot P(0)$ **(2)**

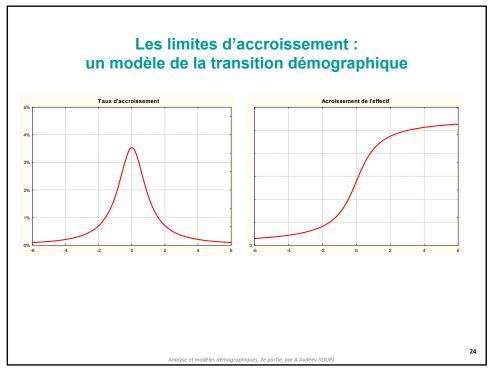
sachant que r = n - d n – les naissances normalisées (standardisées) pour une unité de la population (natalité) d – les décès normalisés (standardisés) pour une unité de la population (mortalité)

La croissance d'une population dépend du rapport entre la natalité et la mortalité

On voit que l'équation (1) et l'équation (2) sont identiques, alors $k=e^r$, ou k=exp(r)


Cependant, cela (3) ne signifie pas que les deux modèles de croissances sont équivalents : population exponentielle croît plus vite, si r > 0; et elle décroît moins vite, si r < 0, que la population « géométrique » (modèle multiplicatif ou puissance)


Exercice : vérifiez cette propriété


temps	r = 0.005	k = 1.005	r = - 0.005	k = -1.005
écoulé	exponentielle	puissance	exponentielle	puissance
0	100 000	100 000	100 000	100 000
10	105 127	105 114	96 079	96 069
50	128 403	128 323	77 880	77 831
100	164 872	164 667	60 653	60 577
150	211 700	211 305	47 237	47 148

(3)

21

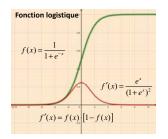
A la recherche des limites pour la croissance : un modèle avec l'effet de saturation – fonction logistique...

Adolphe Quételet (1796-1874) Sur l'homme et le développement de ses facultés ou Essai de physique sociale.

Paris, 1835, t. I et II la résistance ou la sommes des obstacles pour la croissance est égale au carré de vitesse de la croissance de population...

<u>Pierre-François Verhulst</u> (1804-1849): « Notice sur la loi que la population suit dans son accroissement. »

Dans: Correspondance mathématique et physique publiée par A.Quételet. Vol.XVIII,


Bruxelles, 1847

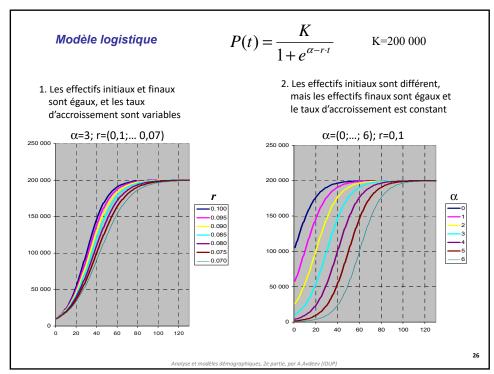
La croissance de la population est freinée par une force proportionnelle au carré de l'effectif

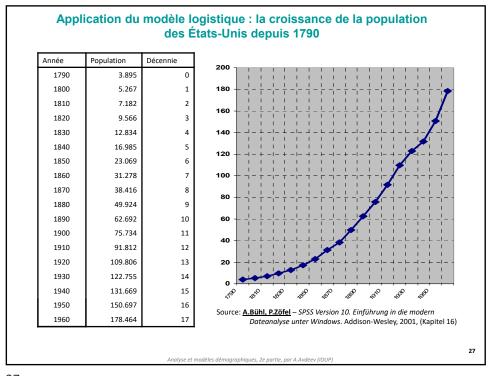
$$\rightarrow dP(t) = [r \cdot P(t) - k \cdot P^{2}(t)]dt$$

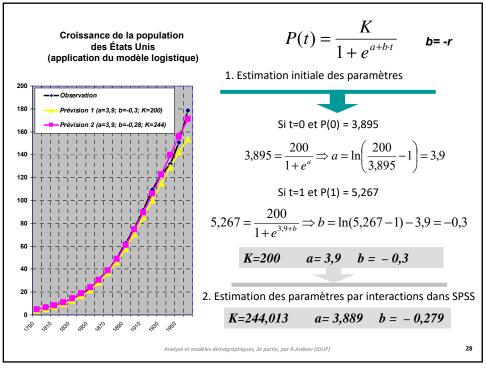
La solution de cette équation donne une fonction logistique :

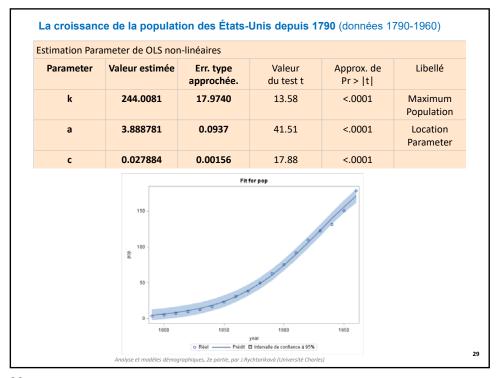
$$P(t) = \frac{K}{1 + e^{\alpha - r \cdot t}}$$

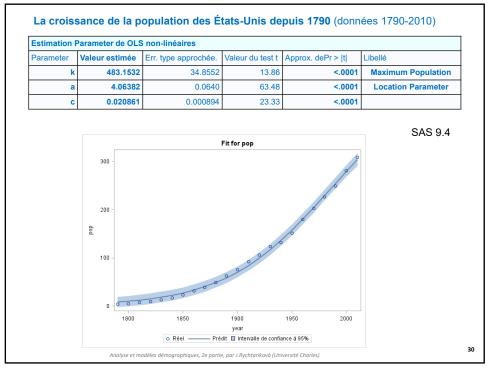
à deux paramètres (à part du taux accroissement r)


 ${\it K}$ est la limite de croissance : $K = \frac{r}{k} \rightarrow \lim_{t \rightarrow \infty} P(t)$


 $\pmb{\alpha}$ - paramètre déterminé par l'écart initial entre la P(0) et K si $\alpha=0$ $\rightarrow P(0)\approx 0.5K$


inalyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)


2


25

Projections de population active 2003 – 2050 en France applications du modèle logistique

Emmanuelle Nauze-Fichet, Frédéric Lerais, Stéphane Lhermitte $Projections\ de\ population\ active\ 2003 - 2050.$ (Insee. Résultats. Société N°13 p.5

« Le choix d'une forme logistique est particulièrement adapté à la description des phénomènes <u>se diffusant progressivement dans le temps, avec une étape d'émergence, de développement et de saturation progressive</u>. Ce choix paraît pertinent pour la description des évolutions de comportements d'activité. »

$$trend(t,f,\sigma,t_i)(t) = \frac{p+f\cdot \exp[\sigma\cdot(t-t_i)]}{1+\exp[\sigma\cdot(t-t_i)]} \quad \text{avec} \\ t-\text{temps (0 en 1967);} \\ p-\text{le taux limite passé;} \\ f-\text{le taux limite futur ;} \\ \sigma-\text{la vitesse de diffusion,} \\ t_i-\text{la date d'inflexion}$$

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUF

31

II. Modèles de l'évolution de structure par âge population comme un système avec une structure complexe Population Mortalité masculine Mortalité fém inine Groupe d'age Nuprialité Févon dité Groupe d'age Migration (le solde migratoire)

Populations stationnaires.

Populations stables.

Potentiel d'accroissement des populations.

Populations semi-stables.

Populations quasi-stables.

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)

33

Population stationnaire : une table de mortalité est un modèle d'une population avec la croissance zéro (r = 0)

Soit:

 $m \rightarrow$ taux de mortalité = production de la mortalité par âge \rightarrow fonction de mortalité $\mu(x)$

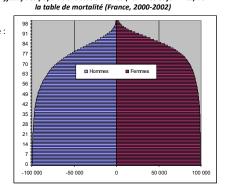
 $b \rightarrow$ taux de natalité = production de la fécondité par âge \rightarrow égale m par définition

r
ightarrow taux d'accroissement est nul $r \coloneqq b - m = 0$ avec DL = 2 = (3-1) on a besoin que 2 paramètres

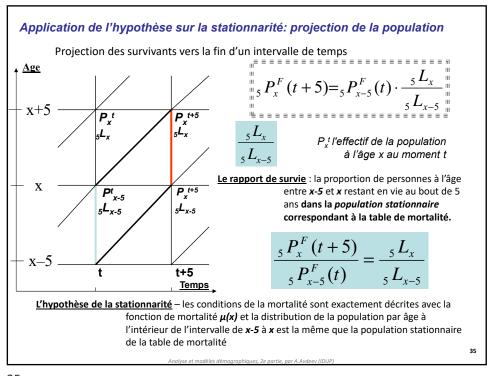
Dans les termes de table de mortalité l'effectif total d'une telle population $\implies T_0 = \sum L_{\mathbf{x}} = S_0 \cdot e_0$

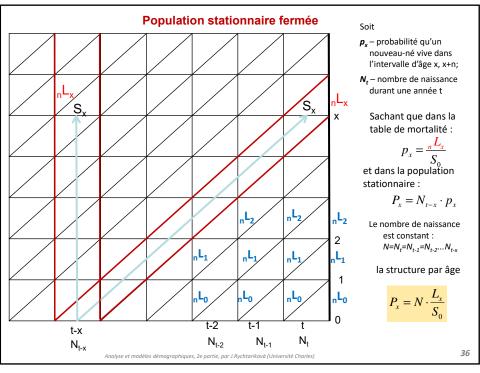
Puisque le nombre de naissances (S_0) = nombre de décès ($\sum d_x$), les taux bruts s'expriment :

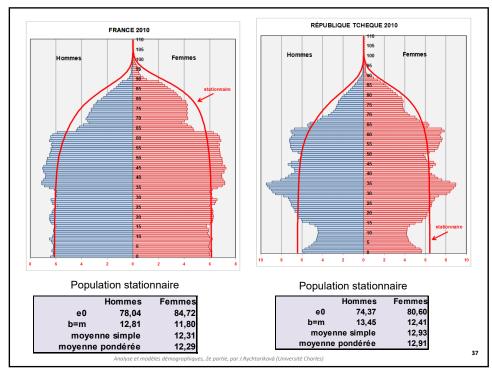
$$b = m = \frac{S_0}{T_0} = \frac{1}{e_0}$$


 $b=m=\frac{S_0}{T_0}=\frac{1}{e_0}$ La structure par âge est constante et ne dépend que de la survie :

$$_{n}C_{x} = \frac{_{n}L_{x}}{T_{0}} = \left(\frac{1}{S_{0}} \cdot \frac{_{n}L_{x}}{e_{0}}\right) \equiv p_{x}$$


L'âge moyen d'une population stationnaire :


$$\overline{x} = \sum_{x=0}^{\omega} x \cdot {_{n}C_{x}} = \frac{\sum_{x=0}^{\omega} x \cdot {_{n}L_{x}}}{S_{0} \cdot e_{0}} = \frac{\sum_{x=0}^{\omega} x \cdot {_{n}L_{x}}}{\sum_{x=0}^{\omega} nL_{x}} = \frac{\sum_{x=0}^{\omega} x \cdot {_{n}L_{x}}}{T_{0}}$$


L'âge moyen d'une population stationnaire n'est pas égal à l'espérance de vie à la naissance.

Effectif des populations stationnaires (hommes et femmes) de

Le concept de population stable

Les populations stables sont celles qui s'accroissent à un taux constant; sont appelées aussi les populations malthusiennes (A. Lotka) ou plutôt exponentielles (aujourd'hui).

A. Lotka définit une population malthusienne comme une population dans laquelle la mortalité et la composition par âge restent invariables.

Demopaedia:

On démontre que si une population fermée se trouvait indéfiniment soumise à des lois invariables de mortalité et de fécondité selon l'âge, cette population tendrait à se développer avec un taux d'accroissement constant, et à acquérir une structure par âge invariable. Le taux instantané limite d'accroissement correspondant, appelé taux intrinsèque d'accroissement naturel, caractérise cette population exponentielle asymptotique, dénommée population stable. La composition par âge de la population stable, ou composition par âge stable, est indépendante de la composition par âge initiale de la population fermée considérée.

Le taux intrinsèque d'accroissement naturel correspondant à la mortalité et à la fécondité par âge observées dans une population est utilisé pour caractériser les virtualités de croissance impliquées par ces conditions de mortalité et de fécondité.

On appelle **population stationnaire** une *population stable* particulière dont le taux d'accroissement est nul.

http://fr-i.demopaedia.org/wiki/Population_stable

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

38

Présentation simplifiée d'une population stable (selon A. Lotka)

Soit

1) N(t) nombre de naissances vivantes croissant selon la loi exponentielle dans une population P avec un taux d'accroissement r:

$$N(t) = N(0) \cdot e^{rt}$$

N(0) est sans importance comme on a vu

2) l(x), ou S(x), une fonction de survie dans la même population Pprésentée par une table de mortalité hypothétique :

Age exact (x)	Fonction de survie $S(x)$	Fonction de survie réduite $p(x) = S(x)/S(0) \le 1$ *
0	100 000	1,000
1	60 000	0,600
2	40 000	0,400
3	20 000	0,200
4	5 000	0,050
5	0	0,000

Exemple emprunté de Preston et al., p.139

3) Migration = 0

39

Population (non-humaine) au 1 janvier de 1800 à 18061) 1/1/1801 1/1/1800 1/1/1802 1/1/1803 1/1/1804 1/1/1805 1/1/1806 Age (a) 1000 e^{5r} 0 1000 1000 e^r 1000 e^{2r} 1000 e^{3r} 1000 e^{4r} 1000 e^{6r} 600 600 e^r $600 e^{2r}$ 600 e^{3r} 600 e4r 600 e^{5r} 1 2 400 400 e^r 400 e^{2r} 400 e^{3r} 400 e4r 200 **200** e^r 200 e^{3r} 3 200 e^{2r} 4 50 50 e^r 50 e^{2r} 0 Au 1 janvier 1805 le rapport entre les naissances et les

autres groupes d'âge devient proportionnel à ${\it e}^{-r}$

$$\frac{600 \cdot e^{4r}}{1000 \cdot e^{5r}} = 0, 6 \cdot e^{-r} \to \frac{P(1)}{N} = e^{-r} \cdot p_1$$

$$\frac{400 \cdot e^{3r}}{1000 \cdot e^{5r}} = 0, 4 \cdot e^{-2 \cdot r} \to \frac{P(2)}{N} = e^{-2 \cdot r} \cdot p_2$$

$$\frac{400 \cdot e^{3r}}{600 \cdot e^{4r}} = 0,667 \cdot e^{-r} \to \frac{P(2)}{P(1)} = e^{-r} \cdot_1 p_1$$

Population stable

structure par âge révolu (a) est constante, définie par un couple p(a) et rla variation de l'effectif de chaque classe d'âge est définie par le facteur er

$$P(a,t) = N(t) \cdot e^{-ra} \cdot p(a)$$

 $c(a) = b \cdot e^{-ra} \cdot p(a)$

1) cf. Preston et al.(2001), p.139

Irina Troïtskaia (Université d'Etat de Moscou Lomonosov)

Conditions d'une population stable :

- 1. le taux d'accroissement des naissances annuelles est constant
- 2. les taux de mortalité par âge (table de mortalité) sont constants
- 3. le solde migratoire = 0 dans tous les âges

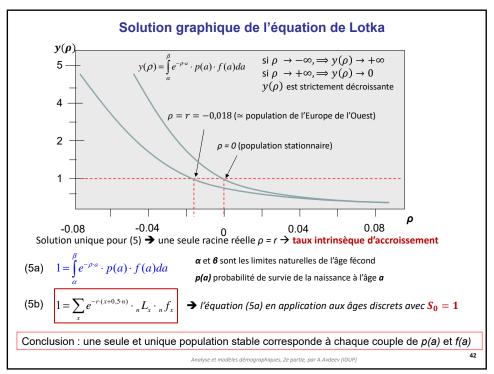
<u>Alfred Lotka (1939) a démontré que</u> la condition 1 ≡ taux de fécondité par âge sont constants

(1)
$$N(t) = \int_{0}^{t} P(a,t) \cdot f(a) da$$

a-1'âge (comme une fonction continue)

N(t) – le nombre de naissance des filles au moment t

P(a, t) – l'effectif (nombre) des femmes d'âge a au moment t


f(a) – taux de fécondité féminine (naissances des filles uniquement)

sachant que $P(a,t) = N(t-a) \cdot p(a); \quad t > 0$

(2) on peut réécrire (1)
$$\rightarrow N(t) = \int_{0}^{t} N(t-a) \cdot p(a) \cdot f(a) da$$
; $t > 50$

- $N(t) = N \cdot e^{\rho \cdot t}$ (3) et puisque par définition →
- (4) on peut substituer N(t) et N(t-a) dans (2) $\rightarrow N \cdot e^{\rho \cdot t} = \int N \cdot e^{\rho \cdot (t-a)} \cdot p(a) \cdot f(a) da$
- (5) et en divisant (4) par $\mathbf{N} \cdot \mathbf{e}^{\mathbf{\rho} \cdot \mathbf{t}}$ on obtient l'équation intégrale de reproduction de la population $1 = e^{-\rho \cdot a} \cdot p(a) \cdot f(a) da > 50$ (équation de Lotka)

41

en tro	is itératio	ns on obti	ent r = 1,475%	b	<u>Source</u> : Preston et al. (2001), p.149						
	(table de mortalité	(fécondité	(naissances de	$r_0 = 0.01569$	$r_1 = 0.01473$	$r_2 = 0.01475$	$r_3 = 0.01475$				
Age (x)	féminine) $_5L_{\scriptscriptstyle X}$	féminine) $_{5}f_{x}$	$_{5}L_{x}$ * $_{5}f_{x}$	₅ L ,	$x * {}_{5}f_{x} ex$	p[-rn(x +	2.5)]				
15	4.66740	0.00567	0.026464	0.02010998	0.02045166	0.02044383	0.02044413				
20	4.63097	0.06627	0.306894	0.21561160	0.22033300	0.22022453	0.22022867				
25	4.58518	0.11204	0.513724	0.33368930	0.34264172	0.34243557	0.34244342				
30	4.53206	0.07889	0.357534	0.21471382	0.22153813	0.22138062	0.22138662				
35	4.46912	0.05075	0.226808	0.12593024	0.13055968	0.13045258	0.13045666				
40	4.39135	0.01590	0.069822	0.03584237	0.03733931	0.03730460	0.03730592				
45	4.28969	0.00610	0.026167	0.01241901	0.01300011	0.01298660	0.01298712				
		$\Sigma =$	1.5274	0.97400633	1.0005909	0.99997749	1.00000085				
	1≈27	`	3) $y(r_n) =$	$=\sum_{x=15}^{45}e^{-r(x+2,5)}.$	$_5L_x\cdot _5f_x^F$ exp	(-0.01569*17.5)*(0.026464 =0.0201				
$r_0 = \frac{\ln 2}{AN}$	$\frac{TNR}{MM} = \frac{\ln\left(\sum_{x=1}^{45} \frac{1}{M}\right)}{\frac{1}{M}}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} L_x \cdot \frac{1}{2} \int \frac{1}$	4) $r_{n+1} =$	$r_n + \frac{y(r_n) - 1}{AMM}$		569+(0.9740063 73+(1.0005909-1					
ln(1,	$\frac{5274)}{27} = 0.01$	569	final, et très peu i	même sur le nombre	r3= etc. ans (âge moyen) n'a a d'itérations nécessair ur du départ de la sér	ucune conséquence e pour arriver au deg					

Approches de l'estimation du taux intrinsèque de croissance à partir d'une table de mortalité et les taux de fécondité par âge Equation fondamentale du modèle de la population féminine stable (unités d'âge) $1 = \sum_{x} e^{-r \cdot (x+0.5)} \cdot L_x \cdot f_x$ Soit r= au taux intrinsèque d'accroissement (naturel), et $R_0= au$ taux net de reproduction

Lotka : μ_1 étant l'âge moyen des mères ou la distance entre les générations

$$\mu_{\rm I} = \frac{\sum\limits_{x} x_c \cdot L_x^{\rm femmes} \cdot f_x^{\rm filles}}{\sum\limits_{x} L_x^{\rm femmes} \cdot f_x^{\rm filles}} \quad \text{en considérant le temps étant discret } (P_t = P_0 * r^t) \to \frac{r = \frac{\mu_{\rm I}}{\sqrt{R_0}}}{\mu_{\rm I}} \qquad r \approx \frac{\ln R_0}{\mu_{\rm I}}$$

Kuczynski: $\alpha=\frac{R_1}{R_0}$ - moyenne $\beta=\left(\frac{R_1}{R_0}\right)^2-\frac{R_2}{R_0} \ \ \text{- variance}$ $\sum L_x^{\text{femmes}}\cdot f_x^{\text{filles}}$

$$R_{0} = \frac{\sum_{x} L_{x}^{femmes} \cdot f_{x}^{filles}}{S_{0}}$$

$$R_{1} = \frac{\sum_{x} x_{c} \cdot L_{x}^{femmes} \cdot f_{x}^{filles}}{S_{0}}$$

$$R_{2} = \frac{\sum_{x} x_{c}^{2} \cdot L_{x}^{femmes} \cdot f_{x}^{filles}}{S_{0}}$$

$$R_{2} = \frac{\sum_{x} x_{c}^{2} \cdot L_{x}^{femmes} \cdot f_{x}^{filles}}{S_{0}}$$

$$X_{c} \text{ centre d'intervalle d'âge}$$

Caractéristiques d'une population stable

Étant

$$P(a,t) = N \cdot e^{r(t-a)} \cdot p(a) = \left(N \cdot e^{rt}\right) \cdot e^{-ra} \cdot p(a) \to \left| P(a,t) = N(t) \cdot e^{-r\cdot a} \cdot p(a) \right| \tag{6}$$

En intégrant (6) par
$$\boldsymbol{a}$$
, on obtient :
$$\int_{0}^{\omega} P(a,t)da = N(t) \cdot \int_{0}^{\omega} e^{-ra} \cdot p(a)da$$
 (6a)

Soit $\mathbf{b} = \frac{N(t)}{P(t)}$ – le taux (brut) de natalité, en substituant (6a) à P(t), on obtient :

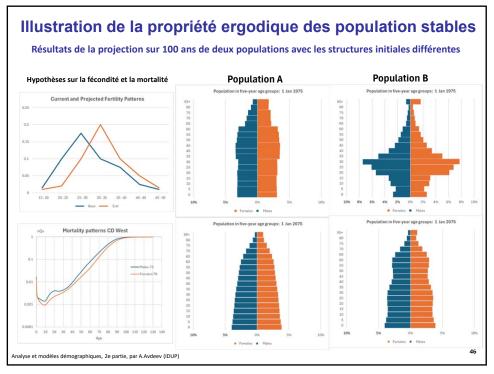
$$b = \frac{N(t)}{\int\limits_{0}^{\omega} P(a,t) da} \Rightarrow b = \frac{1}{\int\limits_{0}^{\omega} e^{-r\cdot a} \cdot p(a) da} \Rightarrow \text{taux de natalité d'une population stable : définie par } r \text{ et } p(a)$$
 (7)

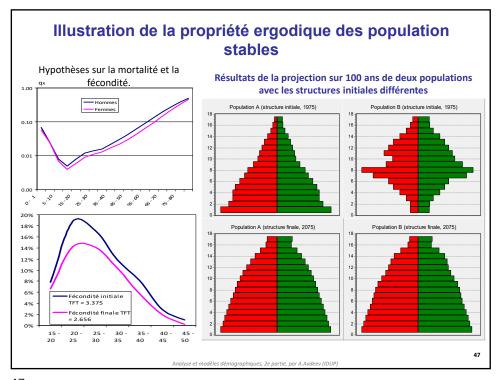
Soit c(a, t) la structure (proportionnelle) par âge d'une population stable :

n substitue (6) à P(a, t)

$$c(a,t) = \frac{P(a,t)}{P(t)} = \frac{N(t)}{P(t)} \cdot e^{-r \cdot a} \cdot p(a) \Rightarrow c(a) = b \cdot e^{-r \cdot a} \cdot p(a)$$
(8)

<u>Propriété ergodique forte :</u> la structure d'une population stable ne dépend que de sa mortalité et de la fécondité (taux par âge) =>


une population avec p(a) et f(a) constantes « oublie » sa structure initiale


<u>Propriété ergodique faible</u>: les structures par âge des populations convergent, si leurs fonctions de survie p(a) et de fécondité f(a) évoluent dans la même direction

Analyse et modèles démographiques, 2e partie, par A.Aydeey (IDUF

4

45

Population stable équivalente: $e^{-r(x+0.5)} \times L_x$

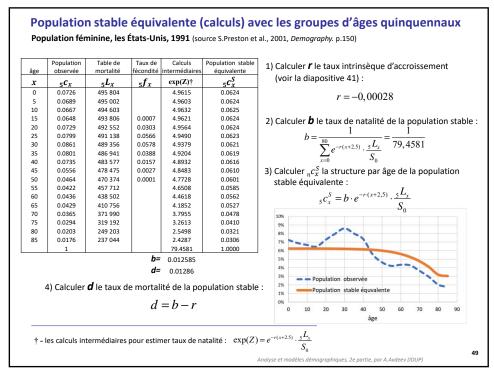
Opérant des valeurs discrètes, on peut réécrire (7), (8) et (5) :

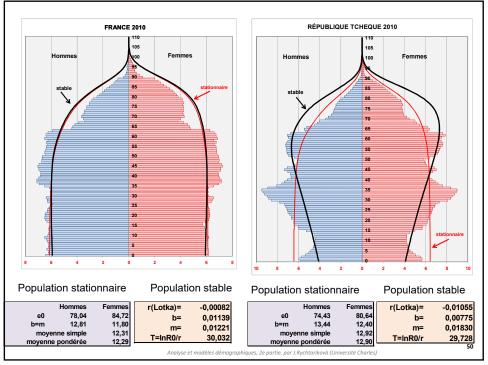
Taux de natalité dans la population stable : $b = \frac{1}{\sum_{x=0,1...}^{\omega} e^{-r(x+0.5)} \cdot \frac{L_x}{S_0}}$ (7a)

Structure proportionnelle : ${}_{1}c_{x} = b \cdot e^{-r(x+0.5)} \cdot \frac{{}_{1}L_{x}}{S_{0}} \tag{8a}$

Equation intégrale : $1 = \sum_{x=\alpha}^{\beta} e^{-r(x+0.5)} \cdot \frac{1}{S_0} L_x \cdot f_x^F \tag{5a}$

Exercice : réécrivez ces formules pour les groupes d'âge quinquennaux.


Soit *TNR* – taux net de reproduction ; on trouve le **taux intrinsèque d'accroissement naturel** par itérations à partir d'approximation suivante :


$$r_0 = \frac{\ln TNR}{AMM}$$

T=AMM âge moyen à la maternité dans la population stable

$$T = AMM = \frac{\sum_{x=0,1,...}^{\omega} (x+0,5) \cdot e^{-r(x+0,5)} \cdot \frac{1}{S_0} \cdot \frac{1}{1} f_x}{\sum_{x=0,1,...}^{\omega} e^{-r(x+0,5)} \cdot \frac{1}{1} \frac{L_x}{S_0} \cdot \frac{1}{1} f_x}$$

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)

Inertie de la population, potentiel de l'accroissement (population momentum)

Paul Vincent, « Potentiel d'accroissement d'une population » // Journal de la Société de Statistique de Paris, n°1-2, Janvier-Fevrier 1945, p.16-39

 $Nathan\,Keyfitz, «\,On\,the\,Momentum\,of\,Population\,Growth\, \textit{w}\,//\,\textit{Demography},\,1971, vol.8,\,no\,1,\,p.71-80$

Roland Pressat « Potentiel d'accroissement des populations », dans Éléments de la démographie mathématiques, Paris, édition de l'AIDELF, 1995, p 176-181

Samuel H. Preston and Michel Guillot, "Population dynamics in an age of declining fertility" // Genus, Vol. 65, (January-April 2009), pp. 83-98

Si une population réelle devient stationnaire, (i.e. $\rm r_0=0$ et $\rm R_0=1$), sa croissance pourrait continuer jusqu'au moment de la stabilisation définitive de sa structure à cause de son inertie ou de son « potentiel de accroissement » accumulé dans sa structure par âge vers le moment de passage à la stationnarité. Ce potentiel (ou *momentum* démographique) peut être mesurer comme le rapport entre l'effectif initial de la population et son effectif limite stationnaire.

Les conditions implicites d'estimation de l'inertie d'une population

- 1. Que la population initiale soit « stable », i.e. qu'elle connaît la mortalité et la fécondité constantes (il n'y a que peu voire aucune population contemporaine qui a connu une telle expérience historique).
- 2. Que la population passe à la fécondité de simple remplacement des générations moyennant un changement proportionnel à tous les âges inverse à TNR antérieur à la stationnarité (on a vu que le changement du niveau de la fécondité générale implique la transformation simultanée du niveau et de la forme de la distribution de fécondité par âge)

Par ailleurs, la description mathématique de l'inertie (du potentiel) est assez complexe et les facteurs de sa variation ne sont pas évidents.

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)

51

Potentiel d'accroissement

Facteur par lequel une population serait multipliée à long terme, si la fécondité baissait aujourd'hui et restait durablement au niveau du remplacement des générations.

Fécondité et mortalité par âge correspondent à une population stationnaire. Pour autant, la population continuera à croître du fait que les jeunes générations déjà nées sont plus nombreuses que dans le cas stationnaire, puis oscillera avant de finalement se fixer à une certaine taille.

Cette inertie est déterminée par la structure par âge au moment du changement de la fécondité et au facteur d'agrandissement en résultant.

Le potentiel d'accroissement a été surtout utilisé pour apprécier l'effet d'une baisse de fécondité sur la taille d'une population d'un pays en voie de développement.

Le facteur multiplicatif v (sous la condition que la population initiale est une population stable) est obtenu par la formule : $\nu=\frac{n\cdot e_0}{\sqrt{R_0}}$ (proposée par James Frauenthal en 1975, note de AA) avec n est taux de natalité; e_0 espérance de vie à la naissance; R_0 taux net de reproduction

Exemple: e_0 =60; n=45 %; R_0 =2.35; $\rightarrow v = 0.045 \times \frac{60}{\sqrt{2.35}} = 0.045 \times 39.14 = 1.75; v=1.76$

Dans les pays développés, un facteur important d'accroissement résulte de la baisse de mortalité au-delà des âges fécondes.

Extrait de Nicolas Brouard « Potentiel de croissance » // Dictionnaire de Démographie, Armand Colin 2011, p.380

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

52

Estimation de l'inertie de la population (potentiel d'accroissement) avec les notions en temps continu

Innarité correspondante à P(x) – une fonction de service; P(x) – une fonction de survie; P(x)Soit N_s est le nombre de naissances vivantes sur une année de la durée moyenne de procréation dans une population dès le moment où ${\bf la}$ stationnarité correspondante à

 $ilde{A}^*$ – âge moyen des mères dans la population stationnaire .

On peut simplifier l'écriture de la formule (1) en y introduisant l'expression : $w(x) = \frac{1}{A^*} \cdot \int_{-\infty}^{\beta} p(y) \cdot f^*(y) dy$

qui exprime la part de la totalité des naissances vivantes chez les femmes à l'âge « x » au moment 0 (passage à la stationnarité) sur une année de vie dans l'attente d'une naissance (ce qui corresponde à l'âge moyen des mères). Par ailleurs, il est facile de démontrer que $\int_0^\beta w(x)dx = 1$

On peut donc réécrire la formule (1) comme suit : $N_s = \int_0^\beta \frac{P(x)}{p(x)} \cdot w(x) dx$ et sachant la durée de vie moyenne (e^o_o) (3)

en déduire l'effectif final de la population stationnaire $P_s = N_s \cdot e_0'' = e_0'' \cdot \int\limits_0^\beta \frac{P(x)}{p(x)} \cdot w(x) dx$ (4)

Par conséquent, on peut mesurer l'inertie (potentiel d'accroissement) M qui est, par définition, un rapport entre l'effectif final de la population stationnaire et celui au moment de passage à la stationnarité :

$$M = \frac{P_s}{P} = \int_0^\beta \frac{P(x)}{P} \cdot \frac{e_0^o}{p(x)} \cdot w(x) dx \rightarrow M = \int_0^\beta \frac{c(x)}{c_s(x)} \cdot w(x) dx$$
 dépendant ainsi de trois distributions (c, c_s et w)sur l'intervalle entre 0 et 1

) Une autre écriture de la formule 1 : $N_s = \frac{1}{A^} \cdot \int_a^a P(x) \cdot \int_a^\beta \frac{p(y)}{p(x)} \cdot f^*(y) dy dx$

53

Estimation de l'inertie d'une population (potentiel de l'accroissement) à la base des statistiques disponibles

- nombre des femmes âgées de x à x+n dans une population observée et $P^F = \sum_n P_x^F$

- nombre des hommes dans une population observée

- nombre d'années vécues dans l'intervalle d'âge x, x+n selon la table de mortalité pour le sexe

et e_0^M - l'espérance de vie à la naissance des femmes et des hommes respectivement

- taux de fécondité féminine par âge observés; (naissances vivantes des filles aux femmes à l'âge x divisées par l'effectif moyen des femmes à l'âge x)

Alors on peut estimer

le taux net de reproduction = $TNR = \sum_{15}^{45} {}_{5} f_{x}^{F} \cdot {}_{5} L_{x}^{F} \leftarrow$ fonction nette de reproduction féminine

les taux par âge de la fécondité correspondante au régime stationnaire = $_nf_x^F$ = $_nf_x^F$ conditions intrinsèques de stationnairté, revient à substituer à f(x) la fonction $f^*(x)$ – fonction de densité de naissances des filles dans le temps continue

l'âge moyen des mères dans la population stationnaire $AMM^s = \sum_{x=15}^{45} (x+2.5) \cdot {}_n f_x^{Fs} \cdot {}_n L_x^{Fs}$ (ou la durée moyenne de la procréation) (ou la durée moyenne de la procréation)

l'âge moyen net à la fécondité

c'était A* dans le temps continue;

Calculs du nombre de naissances féminines et de l'effectif de population stationnaire finale et le potentiel d'accroissement

Il faut maintenant estimer le nombre de naissances produites par les femmes, qui avait l'âge $x < \beta$ (β – âge limite de fécondité)

$$Soit \ _{n}W_{x} = \frac{0.5 \cdot _{n}L_{x}^{F} \cdot _{n}f_{x}^{Fs} + \sum_{y=x+5}^{45} _{n}L_{y}^{F} \cdot _{n}f_{y}^{Fs}}{AMM^{s}} \ \ \text{une part de naissances dans l'état stationnaire réduites à une année de l'âge moyen des mères,} \\ (chez les femmes âgées de x à x+n au moment de passage au régime stationnaire)$$

 $K1 = 0.5 \cdot _n L_a \cdot _n f_a^{F_F} \quad \text{les naissances à l'âge « a » au moment zéro} \\ K2 = \sum_{y=a+5}^{g} {_L V_y \cdot _n f_y^{F_F}} \quad \text{les naissances après l'âge a+5} \\ \text{Alors} \qquad N_s^F = 5 \cdot \sum_{x=0}^{45} \frac{_5 P_x^F}{_5 L_x^F} \cdot _5 W_x^F \quad \text{- le nombre de naissances féminines dans la population stationnaire}$

Plus exactement il faudrait écrire : $N_{s}^{F} = \sum_{x=0}^{45} \frac{{}_{5}P_{x}^{F}}{({}_{3}L_{x}^{F}/5)} {}_{5}w_{x}^{F}$ puisque ${}_{5}L_{x}/5$ sert un estimateur de la fonction de survie (voir formule 3 sur la diapositive 51)

 $P_{_{_{S}}}^{^{F}}=N_{_{_{_{S}}}}^{^{F}}\cdot e_{_{0}}^{^{F}}$ - le nombre des femmes dans la population stationnaire

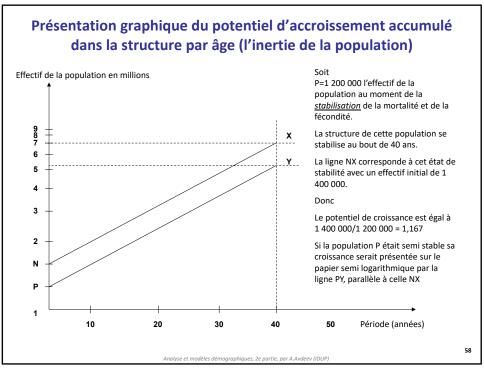
 $P_s^M = N_s^F \cdot RSN \cdot e_0^H$ le nombre des hommes dans la population stationnaire (RSN –rapport des sexes à la naissances)

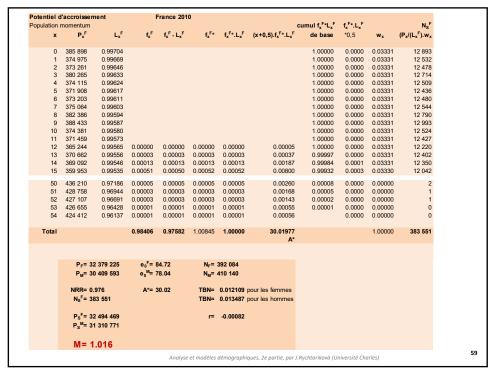
Potentiel d'accroissement : $M = \frac{P_S^F + P_S^H}{P^F + P^H}$

55

Calculs pratiques: groupes d'âges quinquennaux

Soit $l_0 = 1$


- $A^* = \sum_{1}^{45} (x + 2.5) \cdot {}_{5} f_x^F \cdot {}_{5} L_x^F$ 1) l'âge moyen net à la fécondité : —
- 2) le nombre de naissances féminines dans la population stationnaire :


$$N_s^F = \frac{1}{A^*} \cdot \sum_{x=0}^{45} \frac{5P_x^F \cdot \left(\frac{5\frac{L_x^F}{2}}{2} \cdot {}_5f_x^F + \sum_{y=x+5}^{45} {}_5L_y^F \cdot {}_5f_y^F\right)}{\frac{5L_x^F}{5}}$$

- 3) le nombre des femmes dans la population stationnaire : $\longrightarrow P_s^F = N_s^F \cdot e_0^F$
- 4) le nombre des hommes dans la population stationnaire : $\longrightarrow P_s^M = N_s^F \cdot 1.05 \cdot e_0^H$
- 5) le potentiel d'accroissement : -

Samuel H. Preston, Michel Guillot: Population dynamics in age of declining fertility. Genus, LXV, p.83-98 56

Le potentiel d'accroissement démographique (population momentum)

Deux facteurs de croissance de la population mondiale :

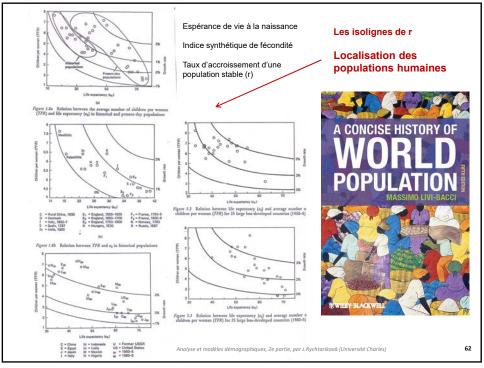
- Le régime démographique avec le remplacement élargi des générations (la génération des filles est plus nombreuse que la génération des mères : on dit « le taux net de reproduction > 1 »);
- L'effet de la structure par âge des populations, désigné comme « population momentum » en anglais (on pourrait dire « le moment de croissance démographique » ou « le moment de population »)
 - = croissance (ou décroissance) provenant de l'inertie de la structure de la population.

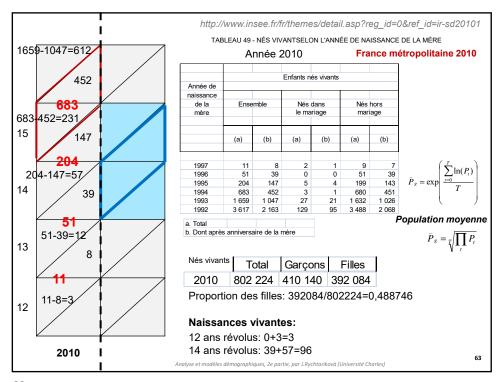
On mesure le moment de croissance comme un rapport entre les effectifs initiaux d'une population au moment de stabilisation et d'une population stable correspondante la l'état finale de cette première population .

Source : Preston S.H., M. Guillot (1997) « Population dynamic in an Age of Declining Fertility" *Genus*, vol.53, n°3-4, p.15-31

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP

Valeurs estimées du « population momentum » pour les régions et quelques pays du monde

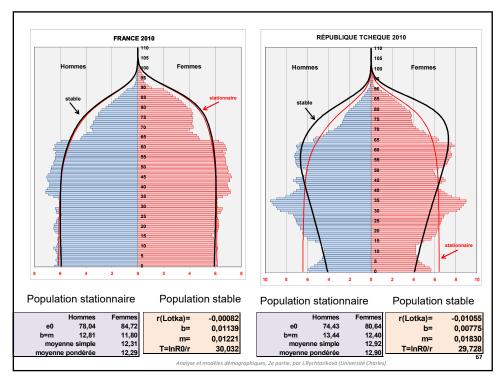

Région ou pays	Population momentum
Afrique	1,56
Asie de l'Est	1,22
Asie Sud-centrale	1,47
Asie Sud-est	1,48
Asie de l'Ouest	1,56
Europe	0,98
Amérique Latine	1,48
Amérique du Nord	1,10
	į.
Australie	0,96
Russie	0,94
Italie	0,91
Allemagne	0,88
Population mondiale	1,35

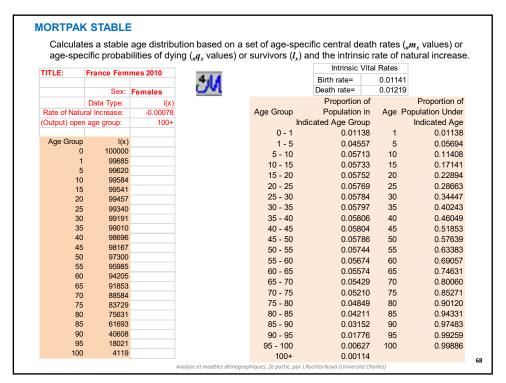

60

Matériaux et illustrations supplémentaires

Analyse et modèles démographiques, 2e partie, par A.Avdeev (IDUP)

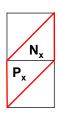
61





nce métropo	litaine 2010								Ro	R+	R>	Sn=ln=1	Sa=la=1
				Population	Population				So=lo=1	(a _x +0,5)*	(a _x +0,5)^2*	(a _x +0,5)*	30-10-1
_	Naissance	r véventos	1.1.2010	1.1.2011	moyenne							L _x (femmes)*	L.(fommos)*
a _x							F (FIL)						
āge révolu	toutes 3	filles	femmes	femmes	femmes	f _x		L _x (femmes)	f _x (filles)	f _x (filles)	f _x (filles)	e ^{-rx} *f _x (filles)	e ^{-rx} *f _x (filles)
12 13	20	1 10	365 244 370 662	372 496 366 277	368 852 368 463	0,00001	0,00000	99 565 99 556	0,00000	0,00005	0,00062	0,000050	0,000004
14	96	47	369 092	371 648	370 368	0.00026	0.00013	99 536	0.00013	0.00183	0.02651	0.001850	0.000027
15	378	185	359 953	370 278	365 079	0.00104	0.00051	99 546	0.00013	0.00781	0,02031	0.007906	
16	1 064	520	359 411	361 291	360 350	0.00295	0.00144	99 521	0.00144	0.02370	0.39101	0.024018	0.001456
17	2 501	1 222	379 968	360 400	370 055	0.00676	0.00330	99 507	0.00329	0.05752	1.00661	0.058347	0.003334
18	5 092	2 489	388 423	380 910	384 648	0.01324	0.00647	99 490	0.00644	0.11909	2.20308		0.006535
19	9 404	4 596	391 845	389 182	390 511	0.02408	0.01177	99 468	0.01171	0.22829	4,45159		
20	13 477	6 587	394 628	392 251	393 438	0,03425	0,01674	99 446	0,01665	0,34130	6,99674	0,347056	0,016930
21	18 014	8 804	394 091	395 165	394 628	0,04565	0,02231	99 423	0,02218	0,47690	10,25345	0,485337	0,022574
22	22 947	11 215	390 209	394 756	392 476	0,05847	0,02858	99 400	0,02840	0,63909	14,37963	0,650925	0,028930
23	28 976	14 162	392 762	391 121	391 941	0,07393	0,03613	99 377	0,03591	0,84383	19,83002		
24	35 038	17 125	388 843	394 075	391 450	0,08951	0,04375	99 353	0,04346	1,06486	26,08912		0,044341
25	41 845	20 452	383 213	390 233	386 707	0,10821	0,05289	99 326	0,05253	1,33952	34,15767	1,367653	0,053633
26	46 939	22 941	375 804	384 715	380 233	0,12345	0,06033	99 300	0,05991	1,58768	42,07344	1,622349	0,061221
27	53 722	26 256	400 292	377 466	388 711	0,13821	0,06755	99 272	0,06706	1,84403	50,71080		
28	59 582	29 120	406 062	402 373	404 213	0,14740	0,07204	99 239	0,07149	2,03758	58,07110		0,073175
29	62 179	30 390	411 478	408 559	410 016	0,15165	0,07412	99 206	0,07353	2,16913	63,98946		0,075320
30 31	60 295 54 703	29 469 26 736	389 099 381 120	413 974 391 463	401 344 386 257	0,15023 0.14162	0,07343	99 175 99 144	0,07282	2,22101 2,16170	67,74076 68.09354		0,074653
31	54 703	26 736	381 120	391 463	384 797	0,14162	0.06375	99 144	0.06319	2,16170	66,73954	2,217929	0,070410
32	50 193 44 234	24 532	376 032	382 898	384 797	0,13044	0,05660	99 111	0,06319	1.87843	62,92738		0.057625
34	38 112	18 627	388 685	377 137	382 867	0.09954	0.04865	99 030	0.04818	1.66220	57.34581	1,709610	
35	34 780	16 999	413 115	389 633	401 202	0,08669	0,04237	98 985	0,04194	1,48884	52,85375		0,043171
36	30 028	14 676	437 813	413 843	425 659	0.07054	0.03448	98 933	0.03411	1.24504	45,44380		0.035141
37	25 060	12 248	450 545	438 521	444 492	0.05638	0.02755	98 873	0.02724	1.02167	38.31250		0.028090
38	19 868	9 710	449 928	451 032	450 480	0,04410	0,02156	98 806	0,02130	0,81999	31,56946	0,846130	0,021977
39	15 280	7 468	442 146	450 393	446 250	0,03424	0,01674	98 734	0,01652	0,65267	25,78037	0,674026	0,017064
40	10 848	5 302	436 471	442 445	439 448	0,02469	0,01206	98 655	0,01190	0,48206	19,52338	0,498240	0,012302
41	7 162	3 500	435 257	436 626	435 941	0,01643	0,00803	98 564	0,00791	0,32844	13,63028		
42	4 569	2 233	434 280	435 207	434 743	0,01051	0,00514	98 460	0,00506	0,21494	9,13502		0,005236
43	2 729	1 334	446 317	434 145	440 189	0,00620	0,00303	98 353	0,00298	0,12964	5,63915		
44	1 464	716	447 362	446 038	446 700	0,00328	0,00160	98 233	0,00157	0,07002	3,11592		0,001632
45	772	377	455 358	446 885	451 102	0,00171	0,00084	98 099	0,00082	0,03733	1,69869		
46	397	194	450 562	454 835	452 693	0,00088	0,00043	97 951	0,00042	0,01952	0,90779		0,000436
47	185	90	436 770	449 881	443 277	0,00042	0,00020	97 786	0,00020	0,00947	0,45003		
48 49	88 63	43 31	438 503 436 073	436 037 437 726	437 268 436 899	0,00020	0,00010	97 605 97 404	0,00010 0,00007	0,00466	0,22583		0,000100
49 50	46	22	436 073	437 726	435 723	0,00014	0.00007	97 404	0.00007	0,00340	0,16820		0,000071 0.000052
51	29	14	438 210	435 236	435 723	0.00007	0.00003	96 944	0.00003	0.00253	0,12700	0.002639	0,000032
52	24	12	427 107	427 669	427 388	0.00007	0.00003	96 691	0.00003	0.00139	0.07314		0.000033
53	9	4	426 655	426 053	426 354	0.00002	0.00001	96 428	0.00001	0.00053	0.02848		0.000020
54	9	4	424 412	425 527	424 969	0,00002	0,00001	96 137	0,00001	0,00054	0,02956		0,000010
Total	802 224	392 084	17 597 264	17 569 562	17 582 099	2,01343	0,98406		0,97582	29,29374	906,40131	30,04231	1,00000
Total	Garçons	Filles	Proportion filles				taux brut de		taux net de	30,01977 âge moyen ne	928,86587 t	30,042 âge moyen à	la maternité
802 224	410 140	392 084	0,48875				reproduction			à la maternité		de la populati	

France métropolitaine 2010 r(Lotka)= -0,00082 0,01139 b= m= 0,01221 α =R1/R0 30,019767 $\beta=\alpha^2-R2/R0$ -27,67945 30,032 T=InR₀/r r(Kuczynski)= -0,00082 T=alfa + 0,5*beta*r 30,031 r = b - mT étant l'intervalle entre générations successives et correspond à l'âge r taux intrinsèque moyen à la maternité dans la d'accroissement naturel population stable b taux de natalité d'une population stable m taux de mortalité d'une population stable 65


		Chif	fres abso	lus					Chit	fres rela	atifs		
	Ré	elle	Station	naire	Stal	ble		Rée	elle	Statio	nnaire	Stable	
	Hommes	Femmes	Hommes	Femmes	Hommes	Femmes		Hommes	Femmes	Hommes	Femmes	Hommes	Femme
0	403 659	385 898	99 639	99 704	99 680	99 745	0	6,429	6,146	6,122	6,126	5,917	5,9
1	391 549	374 975	99 605	99 669	99 727	99 791	1	6,236	5,972	6,120	6,124	5,919	5,9
2	389 755	373 261	99 582	99 646	99 785	99 849	2	6,207	5,945	6,118	6,122	5,923	5,9
3	398 106	380 265	99 564	99 633	99 848	99 918	3	6,340	6,056	6,117	6,121	5,927	5,9
4	390 797	374 115	99 552	99 624	99 918	99 990	4	6,224	5,958	6,116	6,121	5,931	5,9
5	389 641	371 908	99 541	99 617	99 988	100 065	5	6,206	5,923	6,116	6,120	5,935	5,9
6	388 965	373 203	99 528	99 611	100 057	100 140	6	6,195	5,944	6,115	6,120	5,939	5,9
7	394 692	375 064	99 518	99 603	100 128	100 214	7	6,286	5,973	6,114	6,120	5,943	5,9
8	399 840	382 386	99 510	99 594	100 202	100 287	8	6,368	6,090	6,114	6,119	5,948	5,9
9	409 343	388 433	99 502	99 587	100 276	100 361	9	6,519	6,186	6,113	6,119	5,952	5,9
10	393 179	374 381	99 493	99 580	100 348	100 436	10	6,262	5,963	6,113	6,118	5,956	5,9
11	390 584	371 459	99 483	99 573	100 420	100 511	11	6,221	5,916	6,112	6,118	5,960	5,9
12	386 213	365 244	99 472	99 565	100 491	100 585	12	6,151	5,817	6,112	6,117	5,965	5,9
13	389 921	370 662	99 462	99 556	100 563	100 658	13	6,210	5,903	6,111	6,117	5,969	5,9
14	387 050	369 092	99 451	99 546	100 634	100 730	14	6,164	5,878	6,110	6,116	5,973	5,9
15	376 876	359 953	99 430	99 535	100 694	100 801	15	6,002	5,733	6,109	6,115	5,977	5,9
16	376 776	359 411	99 397	99 521	100 743	100 869	16	6,001	5,724	6,107	6,115	5,980	5,9
17	398 157	379 968	99 358	99 507	100 786	100 937	17	6,341	6,052	6,105	6,114	5,982	5,9
18	404 074	388 423	99 313	99 490	100 822	101 002	18	6,435	6,186	6,102	6,113	5,984	5,9
19	409 412	391 845	99 255	99 468	100 845	101 062	19	6,520	6,241	6,098	6,111	5,986	5,9
20	406 307	394 628	99 190	99 446	100 862	101 122	20	6,471	6,285	6,094	6,110	5,987	6,0
105	40	395	52	294	57	320	105	0.001	0.006	0.003	0.018	0.003	0.0
106	19	220	27	159	29	173	105	0,001	0,006				0,0
107	9	112	13	83	14	91	100	0.000	0,004		0.005	- ,	0,0
108	3	55	6	42	7	46	107	0,000	0,002	0.000	.,		0,0
109	1	24	3	20	3	22	108	0,000	0.000				0,0
110	0	16	2	17	2	19	110	0,000	0,000				0,0
110	30 409 593		7 804 081	8 471 925	8 068 142	8 779 484	110	484	516				
	30 409 393	32 319 223	1 004 001	0 47 1 923	0 000 142	0 119 404		404	1000.000		1000.000		1000.0

Les modèles matriciels de population

Le Modèle (Matrice) de Leslie

$$\mathbf{M} = \begin{pmatrix} F_1 & F_2 & F_3 & \cdots & F_{\omega-1} & F_{\omega} \\ P_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & P_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & P_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & P_{\omega-1} & 0 \end{pmatrix}$$

Px étant les probabilités perspectives annuelles de survie: L_{x+1}/L_x

Fx étant les quotients perspectifs nets de fécondité: fx*

$$F_x = N_x/P_x * L_0/S_0$$

 \mathbf{N}_{x} naissances vivantes des filles

 \mathbf{P}_{x}^{-} femmes à l'âge x au 1er janvier

 L_0/S_0 probabilité de survie entre naissance et à l'âge 0 révolu pour les filles

Lecture

Leslie, P. H. (1945). On the Use of Matrices in Certain Population Mathematics. Biometrika, 33(3), 183–212. https://doi.org/10.2307/2332297

Tabah, L. (1968). Représentations matricielles de perspectives de population active. Population (French Edition), 23(3), 437–476.

https://doi.org/10.2307/1529009

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

.

69

Une population fermée, réduite au seul sexe féminin

 $\mathbf{P}_{0,\mathbf{x}}$ population par âge, au moment 0 sous forme d'un vecteur-colonne Matrice de Leslie: \mathbf{M}

px étant les probabilités perspectives annuelles de survie fx étant les quotients perspectifs nets de fécondité; a, b âges limites de procréation

La population: $P_1 = M * P_0$ $P_2 = M * P_1 = M^2 P_0$ $P_n = M^n P_0$

Ce type d'opérations on effectue en faisant les perspectives de population.

En répétant ce processus, on achemine progressivement la population de départ vers l'état stable impliqué par les conditions de mortalité et de fécondité retenue.

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

70

Valeurs propres, vecteurs propres

Soit L une matrice $n \times n$ et X un vecteur $n \times 1$. Un nombre qui vérifie $L \cdot X = \lambda \cdot X$ s'appelle <u>une valeur propre</u> de la matrice L.

A chaque valeur propre est associé au moins un vecteur propre X

Dans le cas d'une matrice de Leslie, <u>le vecteur propre</u>, <u>associé à la valeur propre</u> (première; réelle) <u>dominante</u> $\underline{\lambda_0}$, <u>représente la distribution par âge de la population stable</u>.

Le taux d'accroissement d'une population stable (r) est déterminé par la relation: $\lambda_0 = e^r$ soit $r = ln(\lambda_0)$.

Pour les groupes d'âges quinquennaux: $\lambda_0 = e^{5r} r = [ln(\lambda_0)]/5$

$$\mathbf{P}_{n} = \mathbf{M}^{n} \, \mathbf{P}_{0} \qquad \qquad \mathbf{P}_{n+1} = \lambda_{0} \, \mathbf{P}_{n} \qquad \qquad \mathbf{M}^{n+1} = \lambda_{0} \, \mathbf{M}^{n}$$

nalyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)

71

71

rance	métropo	litaine 20	10; femm	es; donné	es initiales Âges: 0-110 an
					Femmes: effectifs des femmes au 1er janvier 2010
age	Femmes	Lx_fem	px_fem	fx_fi_p_L0	px_fem = Lx+1_femmes/Lx_femmes; probabilité
0	385 898	99704	0,99965	0	perspective de survie fx fi p L0 quotient perspectif net de fécondité
1	374 975	99669	0,99977	0	N _v /P _v * L _n /S _n
2	373 261	99646	0,99987	0	14x'1 x = 20'00
3	380 265	99633	0,99991	0	SAS 9.3 Module: PROC IML: langage
4	374 115	99624	0,99993	0	matriciel
5	371 908	99617	0,99994	0	1) Matrice M de Leslie: M0
6	373 203	99611	0,99992	0	proc IML;
7	375 064	99603	0,99991	0	use d;
8	382 386	99594	0,99993	0	<pre>read all var {PX_FEM</pre>
9	388 433	99587	0,99993	0	<pre>FX_FI_p_L0}into A0;</pre>
10	374 381	99580	0,99993	0	<pre>read all var {Femmes}into</pre>
11	371 459	99573	0,99992	0	PF;
12	365 244	99565	0,99991	0,00001	M0= j(111,111,0);
13	370 662	99556	0,99990	0,00007	P0= j(111,1,0) ;
14	369 092	99546	0,99989	0,00027	Pstab= j(111,1,0);
15	359 953	99535	0,99986	0,00092	do j=1 to 111;
16	359 411	99521	0,99986	0,00225	MO[1,j] = AO[j,2];
17	379 968	99507	0,99983	0,00464	P0 [j,1]=PF[J,1];
18	388 423	99490	0,99978	0,00905	end;
19	391 845	99468	0,99978	0,01417	do i=2 to 111;
20	394 628	99446	0,99977	0,01946	MO [i,i-1]=A0[i-1,1];
					end;
			Analyse et mo	dèles démographiq	ues, 2e partie, par J.Rychtarikovà (Université Charles)

ROW1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		COL1	COL2	COL3	COL4	COL5	COL6	COL7	COL8	COL9	COL10	COL11	COL12	COL13	COL14	COL15	COL16	
ROW3 0 0.99977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW1	0	0	0	0	0	0	0	0	0	0	0	0	0.00001	0.00007	0.00027	0.00092	
ROW4 0 0 0.99987 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW2	0.99965	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
ROW5 0 0 0 0.99991 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW3	0	0.99977	0	0	0	0	0	0	0	0	0	0	0	0	0		
ROW6 0 0 0 0 0.99993 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW4	0	0	0.99987	0	0	0	0	0	0	0	0	0	0	0	0		
ROW7 0 0 0 0 0.99994 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW5	0	0	0	0.99991	0	0	0	0	0	0	0	0	0				
ROW8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW6	0	0	0	0	0.99993	0	0	0	0	0	0	0	0	0	0		
ROW9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROW7	0	0	0	0	0			0	0	0	0	0	0	0	0		
ROW10														_	_	_		
ROW11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_	_	_	_			_		_	_			_	_	_		
RRW12		_							_					_	_	_		
ROW13		_	_	-	-	_	-							_	_	_		
ROW14		_	_	_	_	_				-	_		_	_	_	_		
ROW15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_			_					_								
ROW16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_		-	-		_	-	_		_	_			_	_		
ROW17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	_	-	-	-					-	-	_			_		
ROW18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_	_		_								_					
RRW19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_																
Calcul des valeurs et des vecteurs propres i=0; do until (Dif<=0.1); i=i+1; pi=M0**i*P0; Pix=Pi/Pis[1,1]*1000; stable stab		_	_	-	-	-	-				_	-	_	_	_	_		
i=0; do until (Dif<=0.1); i=i+1; Pi=M0**i*P0; Pis=Pi[+,]; Pir=Pi/Pis[1,1]*1000; StabePstab[+,]; StabePstab[1,1]*1000; StabePstab[1,1]*1000; Pstab[i,1]=Psta[i,1]; équivalente Pi-Pi-Stab; Pi=Pi-Stab; Pi-Pi-Stab; Pi-Pi-Pi-Pi-Pi-Pi-Pi-Pi-Pi-Pi-Pi-Pi-Pi-P		_	_		_						_		_	_				
2) Calcul des valeurs et des vecteurs propres V=eigval (M0);	ROW20	0	0	0	0	0	0	0	0		_	0	0	0	0	0		
3) Calcul de Pir= Pi/Pis[1,1]*1000; stab=Pstab[1,1]*1000; stab=Pstab[1					et de	es vec	teurs	propr	es	d i F	lo unt =i+ 1; Pi=M0*	*i*P();	0.1);				
<pre>Psta=eigvec(M0); do i=I to III; Pstab[i,1]=Psta[i,1];</pre> la population stable stab=Pstab[+,]; Stab=Pstab[1,1]*1000; equivalente equivalente pstab[i,1]=Psta[i,1]; la population stable stab=Pstab/sstab[1,1]*1000; R=Pir-Stab; Dif=ABS(R);	r=V	7[1,1	1;							. F	is=Pi	[+,];						
Psta=eigvec(M0); do i=1 to 111; Pstab[i,1]=Psta[i,1]; la population stable Stab=Pstab[i,1] *1000; equivalente Stab=Pstab[i,1] *1000; equivalente Stab=Pstab sstab[i,1] *1000; equivalente Stab=Pstab sstab[i,1] *1000; equivalente Original Stab=Pstab sstab[i,1] *1000; equivalente Original Stab=Pstab sstab sstab[i,1] *1000; equivalente Original Stab=Pstab sstab ssta	r_1	00/2	١.					3) Ca	alcul c	ie _F	Pir= Pi/Pis[1,1]*1000;							
Psta=elgvec(M0); do i=I to III; Pstab[i,1]=Psta[i,1]; stable Stab=Pstab/sstab[1,1]*1000; equivalente Pstab; Dif=ABS(R);	_	la nonulation																
<pre>pstab[i,1] = Psta[i,1];</pre> <pre> équivalente</pre>	Pst	Psta=eigvec(M()) · ' '							-									
Pstab[i,1]=Psta[i,1];		1=1	to T	11:	_							,		ο[Ι,Ι	1 *T00	U;		
Pstap[1,1]=Psta[1,1]; Dif=ABS(R);	do			•	F2 77			équi	valen			,						
<pre>end;</pre> <pre>sumdif=sum(Dif);</pre>		- 1 ₋ ['			11 1	:					1 + 7 D	C/D)						
. Damail Dam (Bil)		ab[i	, <u> </u>	rsca	, - ,	,				L	TT=AE	(N) G						
Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles) end;	Pst	_	, <u>_</u>] = 1	rsca	, - ,	•												

	POPULATION	Effectifs relatifs p.1000		Population stable :
			différence	Calcul à partir de matrice M; i.e.
	population	stable	stable -	d'une table de mortalité et d'une
	stable	équivalente	équivalente	série des probabilités nets de
0	11,3969	11,3774	0,0194	fécondité.
1	11,4013	11,3784	0,0229	
2	11,4072	11,3816	0,0256	Population stable équivalente : Une population qui approche l'état stable avec une condition de différence définie. Après 114 multiplications de matrice
3	11,4142	11,3869	0,0273	
4	11,4216	11,3937	0,0279	
5	11,4293	11,4019	0,0274	
6	11,4371	11,4114	0,0257	
7	11,4447	11,4219	0,0228	
8	11,4521	11,4333	0,0189	
9	11,4598	11,4459	0,0140	
10	11,4676	11,4592	0,0083	
11	11,4753	11,4732	0,0021	Taux intrinsèque d'accroissement naturel r = -0,00074
12	11,4829	11,4873	-0,0045	
13	11,4904	11,5014	-0,0111	La valeur de r ainsi calculée n'est pas identiques a valeur selon l'équation intégrale de Lotka, que donne r = -0,00082. La différence vient du fait qu'il s'agit de deux approximations. Effectif des femmes 1.1. 2010 32 379 2 Effectif des femmes 1.1. 2124 30 488 5
14	11,4977	11,5152	-0,0174	
15	11,5050	11,5282	-0,0232	
16	11,5120	11,5402	-0,0282	
17	11,5189	11,5511	-0,0322	
18	11,5255	11,5603	-0,0348	
19	11,5315	11,5675	-0,0360	
20	11,5375	11,5732	-0,0357	

```
i=0;
                                                                  SAS 9.3
proc IML;
                              do until (Dif<=0.1);</pre>
use d;
                              i=i+1;
read all var {PX FEM
                              Pi=M0**i*P0;
FX FI p L0}into A0;
read all var {Femmes}into PF; pir= Pi/Pis[1,1]*1000;
MO= j(111,111,0);
                              sstab=Pstab[+,];
PO= j(111,1,0);
                              Stab=Pstab/sstab[1,1]*1000;
Pstab= j(111,1,0);
                             R=Pir-Stab;
do j=1 to 111;
                             Dif=ABS(R);
MO[1,j] = A0[j,2];
                              sumdif=sum(Dif);
P0[j,1]=PF[J,1];
                              end:
end:
                              print i [format=5.0] Stab [format=10.5]
do i=2 to 111;
MO [i,i-1]=A0[i-1,1];
                              Pir [format=10.5] Dif[format=10.5];
                              create strur from Pir [colname='popr'];
end:
                              append from Pir;
V=eigval(M0);
                              create strua from Pi [colname='popa'];
r=V[1,1];
                              append from Pi;
r=log(r);
                              quit;
Psta=eigvec(M0);
                              data dd;
do i=1 to 111;
                              set d;
Pstab[i,1]=Psta[i,1];
                              merge d strua;
end:
Print M0 r [format=10.5];
                              proc means data=dd sum maxdec=0;
                              var femmes popa;
                              run;
                        Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)
```

Populations semi-stables et quasi-stables

- La population semi-stable est un concept mathématique. C'est une population, qui à chaque instant, coïncide avec une population stable correspondant aux conditions de mortalité et de fécondité du moment. C'est une population qui garde, au cours du temps, une composition par âge constante. La propriété fondamentale d'une population semi-stable: la fonction de survie selon l'âge p(a,t), la fécondité par âge f(a,t) et le taux de variation r(t) dépendent du temps t, mais sont liés à un instant donné t par des relations qui sont celles de la population stable à l'instant t. Dans la population semi-stable l'état stable est atteint immédiatement.
- On appelle population quasi stable une population à fécondité constante et à mortalité variable (dans un univers de tables types de mortalité; de e₀=30 à e₀=70;TBR=3; AMM=29); les caractéristiques des populations de ce type sont voisines de celles des populations semi stables puisque leurs structures par âge varient très peu restant très proche à l'état stable. Telles sont les populations dans la première phase de la transition démographique mais surtout celles des pays en voie de développement après la deuxième guerre mondiale, quand l'espérance de vie commence à augmenter, mais la fécondité reste encore invariable. C'est un concept expérimental.

Analyse et modèles démographiques, 2e partie, par J.Rychtarikovà (Université Charles)