Université Paris I Panthéon-Sorbonne

BASIC NOTIONS OF LINEAR ALGEBRA

(short summary)

Michel GRABISCH

1 Vector spaces

A vector space over \mathbb{R} is a set V closed under addition (associative and commutative, with a neutral element $\vec{0}$ (the zero vector), and additive inverses), and scalar multiplication, i.e., multiplication of a vector by a real number, satisfying the following properties for all $a, b \in \mathbb{R}$ and $x, y \in V$:

$$a(x + y) = ax + ay$$
, $(a + b)x = ax + by$, $a(bx) = (ab)x$, $1x = x$.

In the whole document, we will restrict to vector spaces which are subsets of \mathbb{R}^n , for some $n \in \mathbb{N}$.

Vectors are represented as columns, e.g., $x = \begin{pmatrix} 1 \\ 4 \\ 0 \\ -2 \end{pmatrix}$.

A subspace of a vector space V is a subset of V which is a vector space.

A linear combination of vectors $x_1, \ldots, x_k \in V$ is any expression $\alpha_1 x_1 + \cdots + \alpha_k x_k$ with $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. The span of x_1, \ldots, x_k is the set of all their linear combinations:

$$\operatorname{span}\{x_1,\ldots,x_k\} = \{\alpha_1 x_1 + \cdots + \alpha_k x_k : \alpha_1,\ldots,\alpha_k \in \mathbb{R}\}.$$

 $x_1, \ldots, x_k \in V$ are linearly dependent if there exist $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, not all zero, such that

$$\sum_{i=1}^{k} \alpha_i x_i = \vec{0} \quad (\text{zero vector})$$

 $x_1, \ldots, x_k \in V$ are linearly independent if they are not linearly dependent, i.e., for all $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$,

$$\sum_{i=1}^{k} \alpha_i x_i = \vec{0} \Rightarrow \alpha_1 = \dots = \alpha_k = 0.$$

 $\{x_1,\ldots,x_k\}$ is a basis of V if $\mathrm{span}\{x_1,\ldots,x_k\}=V$ and x_1,\ldots,x_k are linearly independent. Consequently, any $v\in V$ has a unique expression as a linear combination of x_1,\ldots,x_k . The dimension of V is the size (cardinality) of a basis of V.

2 Matrices

A $m \times n$ matrix is an array of numbers in \mathbb{R} with m rows and n columns. The usual notation is $A = [a_{ij}]$, where a_{ij} is the entry of A at row i and column j.

The transpose of a $m \times n$ matrix $A = [a_{ij}]$ is the $n \times m$ matrix $A^T = [a_{ji}]$.

The trace of a $m \times n$ matrix $A = [a_{ij}]$ is defined by

$$\operatorname{tr} A = \sum_{i=1}^{k} a_{ii}, \quad \text{with } k = \min(m, n).$$

Any $m \times n$ matrix A defines a linear mapping from \mathbb{R}^n to \mathbb{R}^m by:

$$x \in \mathbb{R}^n \mapsto Ax = \begin{bmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{mj} x_j \end{bmatrix} \in \mathbb{R}^m.$$

The range of A is the range (image) of the corresponding linear mapping, i.e.,

range
$$A = \{ y \in \mathbb{R}^m : y = Ax \text{ for some } x \in \mathbb{R}^n \}.$$

The $null\ space$ or kernel of A is defined by

$$Ker A = \{ x \in \mathbb{R}^n : Ax = \vec{0} \}$$

A fundamental result (called rank-nullity theorem) says that

$$\dim(\operatorname{range} A) + \dim(\operatorname{Ker} A) = n.$$

Matrix operations:

- (i) For $A, B \in \mathbb{R}^{m \times n}$ with $A = [a_{ij}]$ and $B = [b_{ij}], A + B = [a_{ij} + b_{ij}].$
- (ii) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, $AB = [\sum_{k=1}^{n} a_{ik} b_{kj}] \in \mathbb{R}^{m \times p}$.

The identity matrix of order n, denoted by I_n , is a $n \times n$ matrix given by

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Remark 1. (i) If $x, y \in \mathbb{R}^n$, $x^Ty \in \mathbb{R}$ and $xy^T \in \mathbb{R}^{n \times n}$, as a vector is considered as an $n \times 1$ matrix.

(ii) Let $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Then $Ax \in \mathbb{R}^m$ is a linear combination of the columns of A, while $y^T A \in \mathbb{R}^n$ is a linear combination of the rows of A.

3 Determinants

For square matrices, determinants are defined inductively by:

- For a 1×1 matrix $[a_{11}]$: $det[a_{11}] = a_{11}$.
- Otherwise,

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik} = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj},$$

for arbitrary i, j, and A_{ik} is the matrix A without row i and column k.

For example, with n = 2:

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Important results:

- (i) $\det A^T = \det A$
- (ii) $\det AB = \det A \det B$
- (iii) $\det I_n = 1$

- (iv) $\det A = 0$ if and only if a subset of the row vectors (equiv., column vectors) of A are linearly dependent.
- (v) If a row of A is $\vec{0}^T$, then $\det A = 0$.

To each matrix $A \in \mathbb{R}^{m \times n}$ corresponds a unique reduced row echelon form (RREF) (also called Hermite normal form) such that:

- (i) Any zero row occurs at the bottom of the matrix
- (ii) The leading entry (i.e., the first nonzero entry) of any nonzero row is 1
- (iii) All other entries in the column of a leading entry are zero
- (iv) The leading entries occur in a stair step pattern, from left to right: leading entry $a_{ik} \Rightarrow$ leading entry $a_{i+1,\ell}$ (if it exists) with $\ell > k$.

Example of a RREF:

$$A = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The RREF is obtained from a matrix by

- (i) interchanging rows
- (ii) multiply a row by a nonzero scalar
- (iii) a row is replaced by the sum of itself and another row multiplied by a scalar.

Important result: for a matrix $A \in \mathbb{R}^{n \times n}$, $\det A \neq 0$ if and only if its RREF is I_n .

4 Rank and nonsingularity; inverse

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of its range, i.e., the cardinality of a largest linearly independent set of columns (equiv., of rows) of A.

Important results:

- $\operatorname{rank} A = \operatorname{rank} A^T$
- rank A is the rank of its RREF, which is the number of leading entries.

Theorem 1 (characterization of the rank). Let A be a $m \times n$ matrix. The following are equivalent:

- (i) $\operatorname{rank} A = k$
- (ii) k, and no more than k, rows of A are linearly independent
- (iii) k, and no more than k, columns of A are linearly independent
- (iv) Some $k \times k$ submatrix of A has a nonzero determinant, and any $(k+1) \times (k+1)$ submatrix has a zero-determinant
- (v) $k = n \dim(\text{Ker}A)$ (rank-nullity theorem).

A matrix $A \in \mathbb{R}^{m \times n}$ is nonsingular if $Ax = \vec{0} \Leftrightarrow x = \vec{0}$. Otherwise, A is singular. Observe that if m < n then A is singular.

A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that $A^{-1}A = AA^{-1} = I_n$. Note that $\det A^{-1} = \frac{1}{\det A}$.

Theorem 2 (characterization of nonsingularity). Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:

- (i) A is nonsingular
- (ii) A^{-1} exists
- (iii) rank A = n
- (iv) rows are linearly independent
- (v) columns are linearly independent
- (vi) $\det A \neq 0$
- (vii) $\dim(\text{range}A) = n$
- (viii) $\dim(\operatorname{Ker} A) = 0$

5 Linear systems

A linear system of equalities has the form

$$\begin{cases} a_{11}x_1 + \cdots + a_{1n}x_n = b_1 \\ \vdots & \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n = b_m \end{cases}$$

with $a_{ij}, b_j \in \mathbb{R}$ for all i, j. Using matrix notation, this can be rewritten as

$$Ax = b$$

with
$$A = [a_{ij}], b^T = \begin{bmatrix} b_1 & \cdots & b_m \end{bmatrix}$$
, and $x^T = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$.

The Gauss-Jordan elimination method, which leads to the set of solutions of the system, consists in putting the augmented matrix $[A\ b]$ in RREF. Indeed, $A_1x = b_1$ and $A_2x = b_2$ have the same set of solutions $\Leftrightarrow [A_1\ b_1]$ and $[A_2\ b_2]$ have the same RREF.

A linear system is *consistent* if there exists at least one solution. Otherwise, the linear system is *inconsistent*.

Theorem 3 (characterization of consistency). Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. The linear system Ax = b is consistent if and only if $\operatorname{rank}[A \ b] = \operatorname{rank} A$.

(set of solutions) Suppose Ax = b is consistent, with solution x_0 . Observe that x'_0 is solution iff $Ax'_0 = b = Ax_0$ iff $A(x'_0 - x_0) = 0$ iff $x'_0 - x_0 \in \text{Ker } A$. Consequently, the set of solutions has the form

$$\{x_0\} + \text{Ker}A$$

where "+" is understood in the sense of subspaces. Therefore, the dimension of the (affine) subspace of solutions is $\dim(\operatorname{Ker} A)$.

Theorem 4 (characterization of consistent square linear systems). Let $A \in \mathbb{R}^{n \times n}$. The following are equivalent:

- (i) Ax = b is consistent for each $b \in \mathbb{R}^n$
- (ii) $Ax = \vec{0}$ has a unique solution, which is $x = \vec{0}$
- (iii) Ax = b has a unique solution for each $b \in \mathbb{R}^n$
- (iv) A is nonsingular
- (v) A^{-1} exists
- (vi) $\operatorname{rank} A = n$.

If one of the above assertions holds, then the unique solution is $x = A^{-1}b$.

(back to Gauss-Jordan elimination) suppose $[A\ b]$ of the consistent linear system Ax = b has been put in RREF. According to Theorem 3, the number of leading variables (entries) is the rank of A, the remaining variables are the *free variables*, whose number gives the dimension of Ker A.

Ax = b is inconsistent if and only if in the RREF of $[A \ b]$ there is a row of the form $\begin{bmatrix} 0 & \cdots & 0 & a \end{bmatrix}$ with $a \neq 0$.

Example 1. Consider the linear system

$$\begin{cases} 2x + y - z + 3t = 1 \\ 4x + 2y - z + 4t = 5 \\ 2x + y + t = 4 \end{cases}$$

The augmented matrix is

$$[A \ b] = \begin{bmatrix} 2 & 1 & -1 & 3 & 1 \\ 4 & 2 & -1 & 4 & 5 \\ 2 & 1 & 0 & 1 & 4 \end{bmatrix}$$

Let us put it in echelon form¹. Subtracting 2 times row 1 from row 2, and subtracting row 1 from row 3 yield

$$\begin{bmatrix} 2 & 1 & -1 & 3 & 1 \\ 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -2 & 3 \end{bmatrix}$$

Now, adding row 2 and minus row 3 yields

$$\begin{bmatrix} 2 & 1 & -1 & 3 & 1 \\ 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Finally, adding the two first rows yields

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 4 \\ 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

¹In putting in RREF, to solve linear systems, it is not necessary to make the leading entry equal to 1.

Then the system has a solution. There are two free variables y and t, therefore the dimension of the subspace of solutions is 2. Let us express the set of solutions. The system is

$$\begin{cases} 2x + y + t = 4 \\ z - 2t = 3 \end{cases}$$

Putting the free variables on the right handside yields:

$$\begin{cases}
2x & = 4 - y - t \\
z & = 3 + 2t
\end{cases}$$

Hence, finally the set of solutions is given by

$$\{(x, y, z, t) \in \mathbb{R}^4 : x = 2 - \frac{1}{2}y - \frac{1}{2}t, z = 3 + 2t, y, t \in \mathbb{R}\}.$$

In particular, (2,0,3,0) is a solution.

6 Introduction to eigenvalues and eigenvectors

Basic definitions. Given a square matrix $A \in \mathbb{C}^{n \times n}$, if there exists a scalar $\lambda \in \mathbb{C}$ and a nonzero vector $x \in \mathbb{C}^n$ such that

$$Ax = \lambda x$$

then λ is an eigenvalue of A and x is an eigenvector of A. We say that (λ, x) is an eigenpair and the eigenspace of A associated to λ is the vector subspace $\{x \in \mathbb{C}^n : Ax = \lambda x\}$.

Eigenvectors of distinct eigenvalues are linearly independent.

 $y \in \mathbb{C}^n$ is a *left eigenvector* of A associated to λ if $y^*A = \lambda y^*$, where ()* indicates the conjugate transpose.

The spectrum of A, denoted by $\sigma(A)$, is the set of all eigenvalues. Remark that $\vec{0} \in \sigma(A)$ iff A is singular. The spectral radius of A is defined by

$$\rho(A) = \max\{|\lambda|, \lambda \in \sigma(A)\}.$$

Finding eigenvalues. Eigenvalues can be found as the solutions of the *characteristic polynomial* of A:

$$\det(\lambda I_n - A) = 0.$$

Indeed, $Ax = \lambda x$ is equivalent to the system $(A - \lambda I_n)x = \vec{0}$, which can admit a nonzero solution x if and only if $A - \lambda I_n$ is singular, i.e., with zero determinant.

The characteristic polynomial is a polynomial in λ of degree n, which therefore admits n (complex) solutions, not necessarily distinct.

Important properties:

- The trace of A is the sum of the eigenvalues: $\operatorname{tr} A = \sum_{i=1}^{n} \lambda_i$
- The determinant of A is the product of the eigenvalues: $\det A = \prod_{i=1}^n \lambda_i$

Multiplicities. Let $\lambda_1, \ldots, \lambda_q$ be the distinct eigenvalues of A. The algebraic multiplicity α_i of λ_i is the multiplicity of λ_i as a root of the characteristic polynomial. It holds

$$\sum_{i=1}^{q} \alpha_i = n.$$

The geometric multiplicity γ_i of λ_i is the dimension of its eigenspace (dimension of the kernel of $A - \lambda_i I_n$). We have

$$1 \leqslant \gamma_i \leqslant \alpha_i, \quad i = 1, \dots, q.$$

The eigenvalue λ_i is simple if $\alpha_i = 1$. It is semi-simple if $\alpha_i = \gamma_i$.

Diagonalization. A is said to be *diagonalizable* if there exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that SAS^{-1} is a diagonal matrix.

Let $A \in \mathbb{C}^{n \times n}$, and $\lambda_1, \dots, \lambda_q$ be its (distinct) eigenvalues. Then A is diagonalizable iff $\sum_{i=1}^q \gamma_i = n$.

This amounts to say that A is diagonalizable if and only if there exists n linearly independent eigenvectors x^1, \ldots, x^n , in which case $S = [x^1 \cdots x^n]$, and

$$SAS^{-1} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

Jordan decomposition. If a matrix is not diagonalizable, it can be always put into its Jordan form. A *Jordan block* of size m is a $m \times m$ matrix of the form

$$J_m(\lambda) = egin{bmatrix} \lambda & 1 & & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 & \\ & & & & \lambda \end{bmatrix}$$

and $J_1(\lambda) = [\lambda]$. A Jordan matrix is block-diagonal and each block is a Jordan block.

Theorem 5 (Jordan decomposition). Let $T \in \mathbb{C}^{n \times n}$. There exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that

$$T = S \begin{bmatrix} J_{m_1}(\lambda_1) & & & \\ & J_{m_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{m_q}(\lambda_q) \end{bmatrix} S^{-1}$$

with $\sum_{i=1}^{q} m_i = n, \lambda_1, \ldots, \lambda_q$ are the eigenvalues of T, and the geometric multiplicity of λ_i is equal to the number of blocks $J_{m_i}(\lambda_i)$, while the algebraic multiplicity is the sum of the sizes of blocks $J_{m_i}(\lambda_i)$.

If all eigenvalues are semi-simple, then the columns of S are the right eigenvectors, while the rows of S^{-1} are the left eigenvectors.

Let $T \in \mathbb{C}^{m \times m}$ with Jordan reduction SJ_TS^{-1} . Then

$$T^k = SJ_T^k S^{-1}.$$

A square matrix A is semi-convergent if $\lim_{k\to\infty}A^k$ exists, and it is convergent if in addition this limit is the matrix 0.

We have the following properties:

- A Jordan block is convergent iff $|\lambda| < 1$;
- A Jordan block of size 1 is semi-convergent iff $|\lambda| < 1$ or $\lambda = 1$.

From this we deduce the convergence of T^k :

Theorem 6. • T is convergent iff $\rho(T) < 1$;

• T is semi-convergent iff either $\rho(T) < 1$ or 1 is a semisimple eigenvalue and all other eigenvalues have modulus less than 1.