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1 Notations

• Rn := {x = (x1, . . . , xh, . . . , xn) : xh ∈ R, ∀ h = 1, ..., n}

• x ∈ Rn and x ∈ Rn,

x ≥ x⇐⇒ xh ≥ xh, ∀ h = 1, ..., n

x > x⇐⇒ x ≥ x and x 6= x

x� x⇐⇒ xh > xh, ∀ h = 1, ..., n

• x ∈ Rn and x ∈ Rn, x · x denotes the scalar product of x and x.

• A is a matrix with m rows and n columns and B is a matrix with n
rows and l columns, AB denotes the matrix product of A and B.

• H is a n× n matrix, tr(H) denotes the trace of H and det(H) denotes
the determinant of H.

• x ∈ Rn is treated as a row matrix.

• xT denotes the transpose of x ∈ Rn, xT is treated as a column matrix.

• f is a function from X ⊆ Rn to R,

f is weakly increasing (or non-decreasing) on X if for all x and
x in X,

x ≤ x =⇒ f(x) ≤ f(x)

f is increasing on X if for all x and x in X,

x� x =⇒ f(x) < f(x)

f is strictly increasing on X if for all x and x in X,

x < x =⇒ f(x) < f(x)

f strictly increasing on X =⇒ f increasing on X

f strictly increasing on X =⇒ f weakly increasing (or non-decreasing) on X
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• X ⊆ Rn is an open set, f is a function from X to R and x ∈ X,

∇f(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xh
(x), . . . ,

∂f

∂xn
(x)

)
denotes the gradient of f at x, and

Hf(x) :=



∂2f

∂x1∂x1
(x) . . .

∂2f

∂xh∂x1
(x) . . .

∂2f

∂xn∂x1
(x)

...
...

...
∂2f

∂x1∂xh
(x) . . .

∂2f

∂xh∂xh
(x) . . .

∂2f

∂xn∂xh
(x)

...
...

...
∂2f

∂x1∂xn
(x) . . .

∂2f

∂xh∂xn
(x) . . .

∂2f

∂xn∂xn
(x)


n×n

denotes the Hessian matrix of f at x.

• X ⊆ Rn is an open set, g := (g1, . . . , gj, . . . , gm) is a mapping from X
to Rm and x ∈ X,

Jg(x) :=



∂g1
∂x1

(x) . . .
∂g1
∂xh

(x) . . .
∂g1
∂xn

(x)

...
...

...
∂gj
∂x1

(x) . . .
∂gj
∂xh

(x) . . .
∂gj
∂xn

(x)

...
...

...
∂gm
∂x1

(x) . . .
∂gm
∂xh

(x) . . .
∂gm
∂xn

(x)


m×n

=


∇g1(x)

...
∇gj(x)

...
∇gm(x)


m×n

denotes the Jacobian matrix of g at x.
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1.1 Continuity

f is a function from X ⊆ Rn to R.

Definition 1 (Continuous function) f is continuous at x ∈ X if

lim
x→x

f(x) = f(x)

f is continuous on X if f is continuous at every point x ∈ X.

Exercise 2

1. f is continuous at x ∈ X if and only if for every open ball J of center
f(x) there exists an open ball B of center x such that f(B ∩X) ⊆ J .

2. f is continuous at x ∈ X if and only if for every ε > 0 there exists
δ > 0 such that ‖x− x‖ < δ and x ∈ X =⇒ |f(x)− f(x)| < ε.

Proposition 3 (Sequentially continuous function) f is continuous at
x ∈ X if and only if f is sequentially continuous at x, that is, for every
sequence (xn)n∈N ⊆ X such that xn → x, we have that

f(xn)→ f(x)

1.2 Differentiability

X ⊆ Rn is an open set, f is a function from X to R.

Definition 4 (Differentiable function) f is differentiable at x ∈ X if

1. all the partial derivatives of f at x exist,

2. there exists a function Ex defined in some open ball B(0, ε) ⊆ Rn such
that for every u ∈ B(0, ε),

f(x+ u) = f(x) +∇f(x) · u+ ‖u‖Ex(u)

where lim
u→0

Ex(u) = 0

f is differentiable on X if f is differentiable at every point x ∈ X.
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Exercise 5 If f is differentiable at x, then f is continuous at x.

Definition 6 (Directional derivative) Let v ∈ Rn, v 6= 0. The direc-
tional derivative Dvf(x) of f at x ∈ X in the direction v is defined as

lim
t→0+

f(x+ tv)− f(x)

t

if this limit exists and it is finite.

Proposition 7 (Differentiable function/Directional derivative) If f is
differentiable at x ∈ X, then for every v ∈ Rn with v 6= 0,

Dvf(x) = ∇f(x) · v

1.3 Compactness

X is a subset of Rn.

Proposition 8 (Compact set/Subsequences) X is compact if and only
if for every sequence (xn)n∈N ⊆ X there exists a subsequence (xnk

)k∈N of the
sequence (xn)n∈N such that (xnk

)k∈N converges to some point x ∈ X.1

Proposition 9 (Compact set) X is compact if and only if it is closed and
bounded.

Definition 10 (Closed set) X is closed if its complement C(X) := Rn \X
is open.

Proposition 11 (Sequentially closed) X is closed if and only if it is se-
quentially closed, that is, for every sequence (xn)n∈N ⊆ X such that xn → x,
we have

x ∈ X

Definition 12 (Bounded set) X is bounded if it is included in some ball,
that is, there exists ε > 0 such that for all x ∈ X, ‖x‖ < ε.

1Let (xn)n∈N be a sequence and (nk)k∈N be a strictly increasing sequence of natural
numbers. The composed sequence (xnk

)k∈N is a subsequence of the sequence (xn)n∈N.
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2 Extreme Value Theorem

Theorem 13 (Extreme Value Theorem/Weierstrass Theorem) Let f
be a function from X ⊆ Rn to R. If X is a non-empty compact set and f is
continuous on X, then

• ∃ x∗ ∈ X such that f(x∗) ≥ f(x) for all x ∈ X, and

• ∃ x∗∗ ∈ X such that f(x∗∗) ≤ f(x) for al x ∈ X.
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3 Karush–Kuhn–Tucker Conditions

In this section, we focus on necessary and sufficient conditions in terms of
first–order conditions for solving a maximization problem with inequality
constraints.

In this section, we assume that

• C ⊆ Rn is convex and open,

• the following functions f and gj with j = 1, ...,m are differentiable
on C.

f : x ∈ C ⊆ Rn −→ f(x) ∈ R and

gj : x ∈ C ⊆ Rn −→ gj(x) ∈ R, ∀ j = 1, ...,m

Maximization problem

max f(x)
x ∈ C
subject to gj(x) ≥ 0, ∀ j = 1, ...,m

(1)

where f is the objective function, and gj with j = 1, ...,m are the con-
straint functions.

The Karush–Kuhn–Tucker conditions associated with problem (1)
are given below 

∇f(x) +
m∑
j=1

λj∇gj(x) = 0

λj ≥ 0, ∀ j = 1, ...,m
λjgj(x) = 0, ∀ j = 1, ...,m
gj(x) ≥ 0, ∀ j = 1, ...,m

(2)

where for every j = 1, ...,m, λj ∈ R is called Lagrange multiplier associa-
ted with the inequality constraint gj.

Definition 14 Let x∗ ∈ C, we say that the constraint j is binding at x∗ if
gj(x

∗) = 0. We denote
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1. B(x∗) the set of all binding constraints at x∗, that is

B(x∗) := {j = 1, ...,m : gj(x
∗) = 0}

2. m∗ ≤ m the number of elements of B(x∗) and

3. g∗ := (gj)j∈B(x∗) the following mapping

g∗ : x ∈ C ⊆ Rn −→ g∗(x) = (gj(x))j∈B(x∗) ∈ Rm∗

Theorem 15 (Karush–Kuhn–Tucker are necessary conditions) Let x∗

be a solution to problem (1). Assume that one of the following conditions is
satisfied.

1. For all j = 1, ...,m, gj is a linear or affine function.

2. Slater’s Condition :

• for all j = 1, ...,m, gj is a concave function or gj is a quasi-
concave function with ∇gj(x) 6= 0 for all x ∈ C, and

• there exists x ∈ C such that gj(x) > 0 for all j = 1, ...,m.

3. Rank Condition : rank Jg∗(x∗) = m∗ ≤ n.

Then, there exists λ∗ = (λ∗1, ..., λ
∗
j , ..., λ

∗
m) ∈ Rm

+ such that (x∗, λ∗) satisfies
the Karush–Kuhn–Tucker Conditions (2).

Theorem 16 (Karush–Kuhn–Tucker are sufficient conditions) Suppose
that there exists λ∗ = (λ∗1, ..., λ

∗
j , ..., λ

∗
m) ∈ Rm

+ such that (x∗, λ∗) ∈ C × Rm
+

satisfies the Karush–Kuhn–Tucker Conditions (2). Assume that

1. f is a concave function or f is a quasi-concave function with
∇f(x) 6= 0 for all x ∈ C, and

2. gj is a quasi-concave function for all j = 1, ...,m.

Then, x∗ is a solution to problem (1).
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4 Concavity and quasi-concavity

In this section, we assume that C is a convex subset of Rn and f is a function
from C to R.

Concavity

Definition 17 (Concave function) f is concave if for all t ∈ [0, 1] and
for all x and x̄ in C,

f(tx+ (1− t)x̄) ≥ tf(x) + (1− t)f(x̄)

Proposition 18 f is concave if and only if the set

{(x, α) ∈ C × R : f(x) ≥ α}

is a convex subset of Rn+1. The set above is called hypograph of f .

Proposition 19 C is open and f is differentiable on C. f is concave if
and only if for all x and x̄ in C,

f(x) ≤ f(x̄) +∇f(x̄) · (x− x̄)

Proposition 20 C is open and f is twice continuously differentiable
on C. f is concave if and only if for all x ∈ C the Hessian matrix Hf(x)
is negative semidefinite, that is, for all x ∈ C

vHf(x)vT ≤ 0, ∀ v ∈ Rn

Definition 21 (Strictly concave function) f is strictly concave if for all
t ∈]0, 1[ and for all x and x̄ in C with x 6= x̄,

f(tx+ (1− t)x̄) > tf(x) + (1− t)f(x̄)

Proposition 22 C is open and f is differentiable on C. f is strictly
concave if and only if for all x and x̄ in C with x 6= x̄,

f(x) < f(x̄) +∇f(x̄) · (x− x̄)
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Proposition 23 C is open and f is twice continuously differentiable
on C. If for all x ∈ C the Hessian matrix Hf(x) is negative definite, that
is, for all x ∈ C

vHf(x)vT < 0, ∀ v ∈ Rn, v 6= 0

then f is strictly concave.

Quasi-concavity

Definition 24 (Quasi-concave function) f is quasi-concave if and only
if for all α ∈ R the set

{x ∈ C : f(x) ≥ α}

is a convex subset of Rn. The set above is called upper contour set of f at α.

Proposition 25 f is quasi-concave if and only if for all t ∈ [0, 1] and for
all x and x̄ in C,

f(tx+ (1− t)x̄) ≥ min{f(x), f(x̄)}

Proposition 26 C is open and f is differentiable on C. f is quasi-
concave if and only if for all x and x̄ in C,

f(x) ≥ f(x̄) =⇒ ∇f(x̄) · (x− x̄) ≥ 0

Proposition 27 C is open and f is differentiable on C. If f is quasi-
concave and ∇f(x) 6= 0 for all x ∈ C, then for all x and x̄ in C with x 6= x̄,

f(x) > f(x̄) =⇒ ∇f(x̄) · (x− x̄) > 0

Proposition 28 C is open and f is twice continuously differentiable
on C. If f is quasi-concave, then for all x ∈ C the Hessian matrix Hf(x)
is negative semidefinite on Ker∇f(x), that is, for all x ∈ C

v ∈ Rn and ∇f(x) · v = 0 =⇒ vHf(x)vT ≤ 0

Definition 29 (Strictly quasi-concave function) f is strictly quasi-concave
if and only if for all t ∈]0, 1[ and for all x and x̄ in C with x 6= x̄,

f(tx+ (1− t)x̄) > min{f(x), f(x̄)}
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Proposition 30 C is open and f is differentiable on C.

1. If for all x and x̄ in C with x 6= x̄,

f(x) ≥ f(x̄) =⇒ ∇f(x̄) · (x− x̄) > 0

then f is strictly quasi-concave.

2. If f is strictly quasi-concave and ∇f(x) 6= 0 for all x ∈ C, then for
all x and x̄ in C with x 6= x̄,

f(x) ≥ f(x̄) =⇒ ∇f(x̄) · (x− x̄) > 0

Proposition 31 C is open and f is twice continuously differentiable
on C. If for all x ∈ C the Hessian matrix Hf(x) is negative definite on
Ker∇f(x), that is, for all x ∈ C

v ∈ Rn, v 6= 0 and ∇f(x) · v = 0 =⇒ vHf(x)vT < 0

then f is strictly quasi-concave.

Remark 32 We remark that

f linear or affine ⇒ f concave ⇐ f strictly concave
⇓ ⇓

f quasi-concave ⇐ f strictly quasi-concave

We remind the definitions and some properties of negative definite/semidefinite
matrices. Let H be a n× n symmetric matrix.

Definition 33

1. H is negative semidefinite if vHvT ≤ 0 for all v ∈ Rn.

2. H is negative definite if vHvT < 0 for all v ∈ Rn with v 6= 0.

Proposition 34

1. H has n real eigenvalues. We denote λ1, ..., λn the eigenvalues of H.
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2. H is negative semidefinite if and only λi ≤ 0 for every i = 1, ..., n.

3. H is negative definite if and only λi < 0 for every i = 1, ..., n.

Proposition 35

1. If H is negative semidefinite, then tr(H) ≤ 0 and det(H) ≥ 0 if n is
even, det(H) ≤ 0 if n is odd.

2. If H is negative definite, then tr(H) < 0 and det(H) > 0 if n is even,
det(H) < 0 if n is odd.

We remark that if n = 2, then the conditions stated in the proposition
above also are sufficient conditions, that is

1. H is negative semidefinite if and only if tr(H) ≤ 0 and det(H) ≥ 0.

2. H is negative definite if and only if tr(H) < 0 and det(H) > 0.
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