Midterm Exam Micro 1 - 60 minutes

Mobile phones, class notes and problem sets are strictly prohibited

Exercise 1 (20 minutes). There are two commodities. The preference relation \succeq of the consumer is represented by the utility function $u: \mathbb{R}^2_+ \to \mathbb{R}$ defined by

$$u(x_1, x_2) = \sqrt{x_1} + \sqrt{x_2}$$

- 1. Show that this preference relation is continuous, monotone, and convex.
- 2. Let $p = (p_1, p_2) \gg 0$ be a price system and w > 0 be the wealth of the consumer. Determine the demand of this consumer (carefully justify your answer by stating the properties used for this purpose).

Exercise 2 (30 minutes). There are two commodities. As usual,

$$x(p_1, p_2, \mathbf{w}) = (x_1(p_1, p_2, \mathbf{w}), x_2(p_1, p_2, \mathbf{w}))$$

denotes the demand of the consumer. For every $0 < p_1 < p_2$ and for every w > 0, the demand the consumer is given by

$$x_1(p_1, p_2, \mathbf{w}) = \frac{\mathbf{w}}{p_2}$$
 and $x_2(p_1, p_2, \mathbf{w}) = \frac{\mathbf{w}(p_2 - p_1)}{(p_2)^2}$

- 1. Show that this demand is homogeneous of degree zero.
- 2. Show that this demand satisfies Walras's Law.
- 3. State the Weak Axiom of Revealed Preferences (WARP) in the framework of the demand.
- 4. Without loss of generality, normalize to 1 the price of commodity 2, and prove that this demand does **not** satisfy WARP.

Exercise 3 (10 minutes). $C = \{c_1, ..., c_n, ..., c_N\}$ is the finite set of outcomes. \mathcal{L} is the set of lotteries over C. Let \succeq be a preference relation over the set \mathcal{L} .

- 1. State the independence axiom.
- 2. Assume now that \succeq is represented by a function $U:\mathcal{L}\to\mathbb{R}$ that has an expected utility form.
 - (a) What does this mean? (give the formal definition).
 - (b) Then show that \succeq satisfies the independence axiom.