

Université Paris 1 – Panthéon Sorbonne Ecole de Management de la Sorbonne

Modèle relationnel : Notions de base

131

Durand

Etienne

Une relation est:

- > un tableau de valeurs à n-dimensions
- Sous-ensemble du produit cartésien des domaines caractérisant les attributs
- $R(A_1:D_1,A_2:D_2,...,A_n:D_n) \rightarrow D_1 \times D_2 \times ... \times D_n$

101	Durand	Alain	3 rue Rose	Paris
120	Remy	André	46 rue Vilaine	Nantes
131	Durand	Etienne	10 rue Limite	Nice

Un <u>attribut</u> correspond à une colonne de la relation, associé à un domaine

Degré : N° d'attributs (colonnes)

Schéma de la relation (intention) : Définition structurelle de la relation

R 1(Ncli, Nom, Prénom, Adr, Ville)

10 rue Limite

Nice

Nom : chaîne de caractères

Un <u>n-uplet</u> correspond à une ligne de la relation

Cardinalité : N° des n-uplets (lignes)

Extension de la relation : ensemble de n-uplets composant la relation

<u>Schéma de la base de données</u> : *Collection des schémas des relations* qui forment la base de données + ensemble de contraintes

La <u>clé de relation</u> est un attribut (ou ensemble d'attributs) qui identifie de manière unique une ligne d'une relation

- <u>unicité de la clé :</u> Il ne doit pas exister plusieurs lignes de la relation avec la même valeur de clé !
- **Contrainte d'entité :** Toute relation doit avoir une clé!

101 ... 120 ... 131 ...

Chaque valeur de Ncli est unique!

Une <u>clé étrangère</u> est un attribut (ou ensemble d'attributs) dont les valeurs sont celles d'une clé d'une autre relation

101	Durand	Alain	3 rue Rose	Paris
120	Remy	André	46 rue Vilaine	Nantes
131	Durand	Etienne	10 rue Limite	Nice

10RZ75	120	Rouge	R5	180000
20HD38	131	Jaune	2CV	270000
30AV51	101	Verte	Fiesta	100000
40AZ51	101	Noir	Clio	80000

R 1(Ncli, Nom, Prénom, Adr, Ville)

R2 (NV, Ncli, Couleur, Modèle, Km)

Dépendances Fonctionnelles

Définition: soit A et B deux sous-ensembles d'attributs d'une relation R(A,B,...), on dit que $A \to B$ (« A détermine B ») si à une valeur donnée de A correspond tout au plus une valeur de B. A toute valeur $a \in D_A$, on ne peut avoir qu'une valeur unique $b \in D_B$.

NSS → Nom

Au NSS 252 correspond toujours à M. Durand (Pierre).

Nom → NSS

Au nom Martin correspond les NSS 126 (M. Philippe Martin) et 327 (M. Paul Martin)

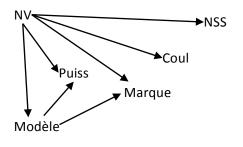
Propriétaire (NSS, Nom, Prénom, Adr, Tel)

·					
NSS	Nom	Prénom	Adr	Tel	
251	Dupont	Jean			
252	Durand	Pierre			
126	Martin	Philippe	15, rue A	012345	
327	Martin	Paul	27. av. C	019876	

Propriétés	Définition	Exemple	
Réflexivité	E→E Tout ensemble d'attribut détermine	$NV \rightarrow NV$	
	A, B → A lui-même (ou une partie de lui-même)	NV, Modèle → NV	
Augmentation	Si E \rightarrow F alors \forall G E, G \rightarrow F	Modèle → Marque alors	
		NV, Modèle → Marque	
Projection	Si E \rightarrow >F,G alors E \rightarrow F et E \rightarrow G	NV → Modèle, Coul alors	
		NV → Modèle et NV → Coul	
Additivité	Si E \rightarrow F et E \rightarrow G alors E \rightarrow F, G	NV → Modèle et NV → Coul alors	
		NV → Modèle, Coul	
Transitivité	Si E \rightarrow F et F \rightarrow G alors E \rightarrow G	NV → Modèle et Modèle → Marque alors	
		NV → Marque	
Pseudo-transitivité	Si E \rightarrow F et F, G \rightarrow H alors E, G \rightarrow H	NV → NSS et NSS, DateEmp → Fonction	
		alors NV, DateEmp → Fonction	

Modèle des DFs	Définition	Exemple
DF Canonique	E→ F est canonique si Y ne contient qu'un seul	NV → Modèle
	attribut	NSS → Nom
DF Elémentaire (DFE)	E→ F (avec F⊄E) est une DFE si s'il n'existe aucun sous-ensemble de E qui détermine F	NV, Modèle → Coul n'est <u>pas</u> une DFE puisque NV → Coul
	(il n'existe pas $G \subset E$ pour lequel $G \rightarrow F$)	
DF Directe	$E \rightarrow F$ est directe s'il n'existe pas G tel que	NV → Marque n'est <u>pas</u> directe puisque
	$E \rightarrow G$ et $G \rightarrow F$	NV → Modèle et Modèle → Marque

Graphe de Dépendances Fonctionnelles


Moyen de visualiser les DFs.

Les sommets correspondent aux attributs,

les arcs correspondent aux DFE entre les attributs

Voiture (NV, Modèle, Marque, Puiss, Coul, NSS)

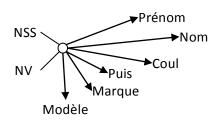
NV	Modèle	Marque	Puiss	Coul	NSS
123AB91	2CV	Citroën	2	Verte	251
234CD75	R5	Renault	5	Rouge	251
541EF92	Punto	Fiat	7	Grise	126
621ZE38	Sierra GLX	Ford	9	Blanche	327

Normalisation

Principe: décomposer une relation en plusieurs, en fonction des dépendances fonctionnelles, afin d'éliminer les anomalies (redondances).

Un seul fait dans un seul lieu Une seule notion sémantique par relation

DFs & Normalisation: les DFs guident la normalisation. Une décomposition sans perte des données est une décomposition qui préserve les DFs.


Formes Normales

1FN: DFs

- tout attribut dépend fonctionnellement de la clé
- la relation ne contient que d'attributs atomiques

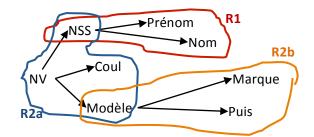
1FN: tous dépendent de la clé

R (NSS, NV, Prénom, Nom, Coul, Puis, Modèle, Marque)

2 FN: seulement DFEs

- être en 1FN
- tout attribut dépend de toute la clé
- uniquement des **DFEs** entre les attributs non-clé et la clé

2FN: uniquement des DFEs


R1 (NSS, Prénom, Nom)

R2 (NV, NSS, Coul, Puis, Modèle, Marque)

3 FN: DFs Elémentaires et directes

- être en 2FN
- il n'existe aucune DF entre les attributs non-clé
- uniquement des DF élémentaires et directes entre les attributs clés et les attributs non-clé

3FN: uniquement des DF élémentaires et directes

R1 (NSS, Prénom, Nom) R2a (NV, NSS, Coul, Modèle) R2b (Modèle, Puis, Marque)

Autres formes normales:

Boyce-Codd, 4FN, 5FN

DFs & Algèbre relationnelle :

Décomposition ↔ projection Validation par jointure

 $R = \pi_{A,B}(R) \bowtie \pi_{A,C}(R)$ $\pi_{A,B}(R)$, $\pi_{A,C}(R)$

R (A, B, C) R1 (A, B)

Décomposer une table R est faire des projections (π) sur R. La décomposition est correcte (sans perte des données) si la jointure entre les tables décomposées équivaut à la table initiale(R).