Microeconomics 1 – Part A: Individual decision making Masters M1 IMMAEF & MAEF

TD – Monday, November 18, 2024

Producer Theory

The following exercises should be submitted on Monday, November 18.

Exercise 1. L = 2 is the number of commodities. The firm produces commodity 2 by using commodity 1 as an input. The production function is $f(z) = \alpha \sqrt{z}$ with $\alpha > 0$ and $z \ge 0$.

1. For every level of output $\overline{y}_2 \ge 0$, determine and draw the following set:

$$Y(\overline{y}_2) := \{ z \in \mathbb{R} \colon z \ge 0 \text{ and } f(z) \ge \overline{y}_2 \}$$

- 2. Write the cost minimization problem of this firm.
- 3. Determine the demand of inputs and the cost function of this firm.

Exercise 2. L = 3 is the number of commodities. The firm produces commodity 3 by using commodities 1 and 2 as inputs. The production function is:

$$f(z_1, z_2) = (z_1)^{\alpha} (z_2)^{\beta}$$
 for all $z_1 \ge 0$ and $z_2 \ge 0$,

with $\alpha > 0$, $\beta > 0$, and $\alpha + \beta \leq 1$.

- 1. Determine the demand of inputs and the cost function of this firm.
- 2. Using the demand of inputs and the cost function, determine the supply and the profit function of this firm [Suggestion: Distinguish the two cases: $\alpha + \beta < 1$ and $\alpha + \beta = 1$].

Exercise 3. Let L be the number of commodities. A firm produces commodity L using the other L-1 commodities as inputs. $z := (z_1, ..., z_l, ..., z_{L-1}) \in \mathbb{R}^{L-1}_+$ denotes a generic bundle of inputs. Show that if the production function $f : \mathbb{R}^{L-1}_+ \longrightarrow \mathbb{R}_+$ is **concave**, then the cost function C is a **convex** function of the output level.