
Tutorial classes: Market Risk Measures

Exercise sheet

Noufel FRIKHA ∗

Exercise 1: Minimum variance portfolio with a twist (Exam 2019)

Fix d ∈ N and consider d-risky assets (S1, . . . , Sd) such that their risky excess returns are
assumed to follow a multivariate Gaussian N (m,Σ), with mean vector m ∈ Rd and covariance
matrix Σ ∈ Sd+. An investor seeks to solve the following optimization problem to find the
optimal vector of weights w = (w1, . . . , wd)> invested in the stocks (S1, . . . , Sd):

min
w∈Rd

1
2w
>Σw

subject to e>w = 1.
(1)

Here e is the vector of ones in Rd, i.e. all of its components are equal to one and > denotes the
transpose operation.
Classical Minimum Variance Portfolio: For questions 1 to 5, we assume that Σ is invertible.

1. Justify the appellation ‘minimum variance portfolio’?

2. Justify that problem (??) is equivalent to the following problem

max
β∈R

min
w∈Rd

1
2w
>Σw − β(e>w − 1). (2)

3. Solve the optimization problem and show that the minimum variance portfolio wMV is
given by

wMV = Σ−1e

e>Σ−1e
.

4. What is the Sharpe ratio of wMV?

5. Is the invertibility assumption of Σ satisfied in practice? Justify.

Minimum Variance Portfolio with an l2-twist: From now on we no longer assume that Σ is in-
vertible and we consider the previous optimization problem but under an additional l2-constraint
on the weights:

min
w∈Rd

1
2w
>Σw

subject to e>w = 1 and w>w ≤ c,
(3)

where c > 0 is a given constant.
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6. Prove that the problem does not admit a solution if c < 1/d.

7. Justify that problem (??) is equivalent to the following maximization problem:

max
γ∈R+

max
β∈R

min
w∈Rd

1
2w
>Σw − β(e>w − 1) + γ(w>w − c) (4)

8. Keeping γ > 0 fixed, show that the solution to the inner minimization problem is given
by

w̃MV(γ) = Σ(γ)−1e

e>Σ(γ)−1e

where Σ(γ) is a d× d-matrix to be determined in terms of Σ and γ. Justify that Σ(γ) is
invertible.

9. What is the advantage of introducing the l2-constraint?

Exercise 2: Pareto distributions and VaR

Let X,Y be two independent random variables following a Pareto distribution (1, 1), meaning
that the density is given by

f(x) = 1x≥0
1

(1 + x)2 , x ∈ R.

1. Verify that f is indeed a density function and that

P(X ≥ t) = 1
1 + t

, t ≥ 0.

2. Compute VaRα(X) for α ∈ (0, 1).

3. Compute P(X + Y ≥ t), for t ≥ 0.

4. Compare VaRα(X + Y ) and VaRα(X) + VaRα(Y ), for any α ∈ (0, 1).

5. Comment.

Exercise 3: On spherical distributions (Exam 2019)

Fix (Ω,F ,P) a probability space, d ∈ N. We will denote by > the transpose operation and
by ‖t‖ =

√
t>t =

√
t21 + t22 + . . .+ t2d the euclidean norm of a vector t = (t1, . . . , td)> ∈ Rd.

For a d-dimensional vector-valued random variable X = (X1, . . . , Xd)> we denote by φX its
characteristic function, that is

φX(t) = E
[
exp(it>X)

]
, t ∈ Rd.

We say that the d-dimensional vector X = (X1, . . . , Xd)> has a spherical distribution if there
exists a function ψ : R→ R such that its characteristic function satisfies

φX(t) = ψ(t>t) = ψ(t21 + t22 + . . .+ t2d).

We will write X ∼ Sd(ψ) to denote that X has a spherical distribution with characteristic
function ψ(t>t). Throughout this exercise we fix X ∼ Sd(ψ) for some function ψ and we define
the Rd-valued random variable

Y = µ+ CX, (5)

where µ ∈ Rd and C ∈ Rd×d.
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1. Let Z ∼ N (0, Id), where Id is the identity matrix. Show that Z ∼ Sd(ψ0) for a function
ψ0 to be determined.

2. Fix a ∈ Rd. Show that

a>X
d= ‖a‖X1,

where d= stands for the equality in distribution and we recall that X1 is the first component
of the vector X.

3. Deduce that
a>Y

d= a>µ+ ‖C>a‖X1,

for all a ∈ Rd.

Part 1. Value-at-Risk. Fix α ∈ (0, 1) and set d = 2.

4. Justify that VaRα(U) = VaRα(V ), for any two random variables U and V such that
U

d= V .

5. Deduce that
VaRα(a>Y ) = a>µ+ ‖C>a‖VaRα(X1),

for all a ∈ Rd.

6. Using the above, show that VaRα(Y1 + Y2) ≤ VaRα(Y1) + VaRα(Y2).

7. What is the financial interpretation of the previous inequality? Does it hold for more
general distributions Y ?

Part 2. Optimization problem. More generally, let d ≥ 2 and and consider d-risky assets
(S1, . . . , Sd) such that their risky excess returns are assumed to follow the distribution Y as in
(??). We seek to find the optimal vector of weights w = (w1, . . . , wd)> invested in the stocks
(S1, . . . , Sd) mimimzing the Value-at-Risk of the portfolio:

min
w∈Rd

1
2VaRα(w>Y )

subject to e>w = 1 µ>w = r

(6)

for a fixed level of returns r > 0, and e = (1, . . . , 1)> the vector of ones in Rd.

8. Show that the minimization problem (??) is equivalent to

min
w∈Rd

1
2w
>Σw

subject to e>w = 1.

where Σ is a d× d-matrix to be determined.

9. What problem do you recognize? Find the optimal vector of weights w∗.

10. Can we replace VaRα in (??) by more general risk measures ρ? What properties should
ρ satisfy to obtain the same conclusions? Does it work for the expected shortfall?
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Exercise 4: Value-at-Risk (Exam 2019)

Let X denote a random variable on a probability space (Ω,F ,P) which corresponds to the losses
of a portfolio. Recall that the Value-at-Risk VaRα(X) of the portfolio X for the threshold α is
defined by

VaRα(X) = F−X (α),

where F−X is given by

F−X (y) = inf{x ∈ R : FX(x) ≥ y}, y ∈ (0, 1),

and FX is the cumulative distribution function of X.

1. Show that F− is non-decreasing and deduce that for all α1 ≤ α2, VaRα1(X) ≤ VaRα2(X).

2. Show how this result can be deduced from a graph on the Value-at-Risk, under a suitable
assumption to be specified.

From now on, we assume that X ∼ N (µ, σ2) for some µ ∈ R and σ ∈ R. Fix a threshold
α ∈ (0, 1), n ∈ N and let X1, . . . , Xn denote n independent observations of X, i.e. Xi ∼
N (µ, σ2), i = 1 . . . , n. We denote by Ln(µ, σ2) the likelihood function of (X1, . . . , Xn) and we
set ln(µ, σ2) := logLn(µ, σ2).

3. Show that
VaRα(X) = µ+ σzα,

where zα = F−N (0,1)(α) is the α-quantile of a standard Gaussian N (0, 1).

4. Show that
ln(µ, σ2) = −n2 log 2π − n

2 log σ2 − 1
2σ2

n∑
i=1

(Xi − µ)2.

5. Derive the maximum likelihood estimators (µ̂, σ̂2) for (µ, σ2) and deduce an estimator for
VaRα(X).

6. What are the advantages and disadvantages of this method? Explain alternative methods
correcting these issues.

Exercise 5: Wang risk measures (Exam 2019)

Let X be a non-negative random variable defined on a probability space (Ω,F ,P). We denote
by G the following set of functions

G = {g : [0, 1]→ [0, 1] non-decreasing and right-continuous such that g(0) = 0 and g(1) = 1}.

For any g ∈ G, we define ρg by

ρg(X) =
∫ ∞

0
g(1− FX(x))dx,

where FX is the cumulative distribution function of X.

1. Justify that ρg can be considered as a risk measure.

2. Verify that id : y 7→ y belongs to G and show that ρid(X) = E[X].
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3. Fix α ∈ (0, 1). Verify that gα : y 7→ 1{y≥1−α} belongs to G and compute ρgα(X).

4. We recall that for any non-decreasing and right-continuous function we can define its
Stieltjes measure dg given by dg((s, t]) = g(t)−g(s) so that we have g(t) = g(s)+

∫ t
s dg(u),

for all s ≤ t. Show that, for all g ∈ G,

ρg(X) =
∫ 1

0
VaR1−α(X)dg(α).

5. Fix g ∈ G. Show that ρg is invariant by translation, positive homogeneous and monotone.

6. Is ρg sub-additive for all g ∈ G? Justify.

7. Let g ∈ G twice differentiable with continuous first and second derivatives. Assume that
FX is continuous.

(a) Recall the definition of the expected shorftall ESα(X) and show that

ESα(X) = 1
1− α

∫ 1

α
VaRp(X)dp, α ∈ (0, 1)

(b) Show that

ρg(X) = −
∫ 1

0
ES1−ξ(X)ξg′′(ξ)dξ + g′(1)E[X].

(c) Deduce that ρg is sub-additive if g is concave.
(d) What can be said on ρg when g is concave?
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