Logic and Sets Final exam 2023 (2h)

Name:

QEM/MMEF

Exercise 1 (5pts)

Indicate for each of the following assertions if they are true (T) or false (F).

- 1. The strong induction principle implies the weak induction principle but not the converse.
- 2. $B \cup (\cap_{i \in I} A_i) = \cap_{i \in I} (B \cup A_i)$
- 3. $A \times B = \emptyset$ is equivalent to $(A = \emptyset \lor B = \emptyset)$.
- 4. $f^{-1}(B \cup C) = f^{-1}(B) \cup f^{-1}(C)$
- 5. $f(A \cap B) = f(A) \cap f(B)$
- 6. The function $f: [0, \infty[\to \mathbb{R} \text{ defined by } f(x) = \log x \text{ is a bijection.}$
- 7. The function $f : \mathbb{R} \to [-1, 1]$ defined by $f(x) = \sin x$ is a surjection.
- 8. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^4 + 4x^2 + 2$ is an injection.
- 9. Let $f: A \to B, g: B \to C$. If $g \circ f$ is bijective, then f, g are bijective.
- 10. Let $f: X \to Y$. Then $f^{-1}(A)$ exists for any $A \subseteq X$ if and only if f is a bijection.
- 11. The relation $a\mathcal{R}b$ (a divides b, with $a, b \in \mathbb{Z}$) is reflexive, complete and transitive.
- 12. Countable unions of countable sets are countable.
- 13. \mathbb{Z} is equipotent with \mathbb{N} .
- 14. \mathbb{R} is equipotent with \mathbb{Q} .
- 15. \mathbb{N}^k is countable for all $k \in \mathbb{N}$.
- 16. The set of irrational numbers is countable.
- 17. $2^{\mathbb{N}}$ is uncountable.
- 18. \mathbb{R}^2 is equipotent with \mathbb{R} .
- 19. It is possible that an infimum exists but no minimal element exists.
- 20. It is possible that a minimal element exists but no infimum exists.

Exercise 2 (4 pts)

Consider the following matrix:

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & 0 & -1 \end{bmatrix}$$

1. (3pts) Find its eigenvalues, together with their algebraic and geometric multiplicities, and find the eigenvectors.

2. (1pt) Is the matrix diagonalizable? Justify your answer.

Exercise 3 (3pts)

Let E be a set and \mathcal{R} the relation on the power set $\mathcal{P}(E)$ defined by

 $A\mathcal{R}B$ if $\{A = B \text{ or } A = B^c\}$

for any $A, B \subseteq E$, where B^c is the complement of B in E.

- 1. Show that \mathcal{R} is an equivalence relation.
- 2. Take $E = \{1, 2, 3\}$. Write $\mathcal{P}(E)$ and the equivalence classes of \mathcal{R} on $\mathcal{P}(E)$.

Exercise 4 (3 pts)

Let $f : X \to Y$. Show that $f(f^{-1}(B)) \subseteq B, \forall B \subseteq Y$, and show by an example that equality may not hold. Under which additional condition on f do we have equality?

Exercise 5 (4pts)

Determine, if they exist, the set of lower bounds, upper bounds, the minimal and maximal elements, the infimum and supremum of the following subsets of \mathbb{R} :

 $1. \left\{ \frac{1}{1+x^2} : x \in \mathbb{R} \right\}$

2.
$$\{e^n : n \in \mathbb{N}\}$$

Same question for the following subsets of \mathbb{Q} :

1.
$$\left\{\frac{n}{n^2+1} : n \in \mathbb{N}\right\}$$

2.
$$\left\{x \in \mathbb{Q} : x > \sqrt{2}\right\}$$

Note: $0 \notin \mathbb{N}$.

Question (1pt)

Explain what is the continuum hypothesis.