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1. Introduction 

 

What is the aim and character of big data sciences like cancer genomics? Some 

(Hey, et. al., 2009) have claimed that data-driven science is an entirely new paradigm for 

science – that data driven science will replace hypothesis-driven and experimental 

sciences. Others have proposed that there is not a dichotomy between data driven and 

hypothesis-driven research, but rather the approaches are ‘hybridized’ (Smalheiser 2002; 

Kell and Oliver 2003; Strasser 2012; Keating and Cambrosio 2012; Leonelli 2012).   

This raises the question, however, what exactly does it mean to “hybridize” the 

two. As Strasser (2012, 2019) argued, when we put data driven science in historical 

perspective, it seems clear that the enterprise of organizing, comparing and analyzing 

large amounts of data has a long history, and has always required that researchers endorse 

hypotheses, however tentatively. From Linnaeus (Charmantier and Müller-Wille 2012) to 

model organism research (Leonelli, 2016), some tentative hypotheses or commitment to 

ontological categories is required to characterize and organize data.1  

Here I consider the Cancer Genome Atlas (TCGA) as a case in point. I argue that 

this episode in the history of genomics provides further grounds to contest the sharp 

contrast between purportedly “hypothesis free” or “data led” and hypothesis driven 

research. The enterprise of collection and cataloguing genomic data in TCGA involved 

refinement of methods for identification and classification, a hypothesis-driven and 

experimental process.  

 
1 Ratti (2015) distinguishes two kinds of research in cancer genomics: merely descriptive data mining, 

versus “mechanistic” hypothesis testing. The latter of the two is explanatory, in virtue of “identification of 

a mechanism.” Contra Ratti, in my view, at least in TCGA, the iterated and partial ways in which 

mechanisms are identified over time, suggests that any divide between the “merely descriptive” and 

mechanism identification is blurred. 



Moreover, I will argue that there are distinctive features of this case, which repay 

closer scrutiny. TCGA was conducted in a context where there was significant pressure to 

produce publications, and demonstrate potential clinical applications. Grant proposals 

and public statements about TCGA framed the project as in service of cancer medicine: 

developing better prognostic and diagnostic tools, enabling “targeted” therapies. There 

was thus a premium on identification of “actionable” variants, efficient completion of the 

project, and a competitive aspect of the research. Yet, what count as “actionable” 

variants, and how we demarcate “driver” genes from “passenger” genes, was an open 

question at this stage, and one that TCGA itself aimed in part to resolve. 

The project was jointly run by both NCI (National Cancer Institute) and NHGRI 

(National Human Genome Research Institute), which are two institutional cultures – one 

more “applied” and one more “basic” science. The project managers anticipated 

challenges in collaboration, calibration of tools, and analysis of results, in part because 

they were some of the same project managers of the human genome project (HGP), and 

so planned in advance for exactly such challenges. In light of these anticipated 

challenges, they modeled TCGA on the human genome project (HGP). Like the HGP, 

continued support and participation in the program was contingent on efficiency, quality 

and consistency. Project managers put the participants into competition, in order to 

promote productive collaboration, test out and develop novel technologies, and refine 

tools of analysis (Peterson, J. 2018, NHGRI workshop).  

Like the HGP, TCGA was carried out by researchers with different disciplinary 

backgrounds and training, as well as quite different goals, which led to occasional 

disagreements about priorities, data quality, and analysis. Clinicians at the front end of 

the research (collecting samples from patients), and data analysts at the tail end of 

research had to learn to communicate effectively and resolve such conflicts. This was 

complicated by the fact that there was a bootstrapping element to this research. Many of 

the questions researchers were investigating could not be clearly defined until 

preliminary data were in. Yet, organizing and analyzing the data effectively itself 

required answers to these same questions. Researchers could thus not simply “let the data 

lead”; analysis of data itself was a process of reframing, and refining, hypotheses about 

how to separate signal from noise.  



In sum, TCGA was neither strictly speaking hypothesis driven, nor simply natural 

history; it was scaffolding future research. In this way, the project is not necessarily all 

that different from natural history, especially natural history with the infrastructure of 

museums (cf. Strasser, 2019). In the early stages of the sequencing of cancer genomes, 

researchers were still mapping out the sample space. This was – itself – a hypothesis 

driven enterprise. A major site of dispute was how best to define and identify “drivers” of 

cancer.2 Indeed, this issue is still a matter of dispute, as it is now becoming increasingly 

clear that the results of TCGA (particularly in the first five years of its tenure) will need 

to be revisited. The quality of the samples and methods of both sequencing and sequence 

analysis, some argue, suggest that the false positive rate for the original papers may have 

been as high as 40% (Shi, et. al., 2018).  

Of course, this will not sound all that surprising to those familiar with the fact that 

science is a process requiring lots of trial and error. Before we can know how to test 

hypotheses, we need to calibrate our instruments, we need to sample the space, and we 

need to understand the particular challenges that face classification in some domain. As I 

will document below, researchers intended the process to be the first in an iterative series 

of steps at better mapping out cancer’s genomic diversity, or, to help us identify both the 

“known knowns, known unknowns and unknown unknowns” (Govindan, 2018). 

TCGA’s major successes were the generation of tools for analysis, institutional 

relationships, and methodological strategies necessary for future development of truly 

(clinically) useful cancer genomics. As Biden might have put it, TCGA was setting the 

stage for the “moon shot” of precision medicine. It took us part of the way there, but it 

also provided important clues for exactly how far we need to go. TCGA’s “marker” 

papers containing “consensus genomes” of the acute myeloid leukemia (or, AML), 

breast, prostate, and lung adenocarcinoma, published in Cell and Nature were substantive 

scientific achievements, but they were also tentative and preliminary. Mapping the 

unknown and scaffolding future research are, however, both important parts of successful 

science. In this way, the TCGA was not altogether different from Alan Boyden’s blood 

 
2 The concept of a cancer “driver” is contested, but at least at first, the idea was that there were 5-8 

mutations per cancer, associated with capacities typically associated with growth and successful survival of 

cancer cells: evading immune detection, attracting a blood supply, replicating without limit, invading 

neighboring tissue, resisting apoptosis, and so on. See below for further discussion. 



banks, or Margaret Dayhoff’s Atlas of Protein Sequence and Structure (cf. Strasser, 

2019). 

 

2. Background: The Planning Stage 

 

The predecessors of this project began almost two decades ago. Li Ding recalls the 

initial idea developing around 2003, and the first iteration of it was called the “tumor 

sequencing project”: 

 

Ding: So, I think around 2003, 2004, this idea of doing cancer sequencing came 

up… the tumor sequencing project. It was launched by the National Human 

Genome Research Institute, at that time lead by Francis Collins. This project 

involved the sequencing of 188 patients with lung adenocarcinoma. We decided 

to use a targeted gene approach. So, by working with Dr. Michael Meyerson from 

the Broad Institute, we came up with a 623 gene list for this project. From today’s 

view, it is small. But, at that time, it was definitely the biggest endeavor in cancer 

genomics. 

AP: So you weren’t sequencing whole exomes, or whole genomes, at the time? 

You were just sequencing these targeted genes? 

LD: Yes. 623 genes for 188 patients with lung adenocarcinoma. To get that 

project going, it required collaboration across the three major sequencing centers. 

So, that was Wash U, Broad, and the Baylor College of Medicine… So, there are 

a few challenges to do such a big project: Number one: capacity. When you think 

about 188 patients, across 623 genes. You are thinking 188 patients x2, because 

you have to sequence tumor and normal. And you are talking about 623 x10 

amplicons, because for each gene, there are multiple exons, and we have to design 

PCR primers to amplify these regions, because at that time we were still using 

Sanger sequencing. So, we have to … there are a lot of steps involved. We need 

to primer picking pipeline, to ensure that we get success. And, we don’t always 

get what we want on the first try. So we have to go back and redo, and so on and 

so forth, to get good coverage across 623 candidate cancer genes.  



… Eventually we were able to publish this paper in Nature, in 2008. It was almost 

a 4-5 year project, from the design to the completion. And, with I believe, if I 

remember right, people from 19 different institutions, under the leadership of 

NHGRI – at that time, Francis. NCI director, Harold Varmus was also a coauthor 

on this paper. He was quite interested in this project – in lung cancer. He’s still 

interested in lung cancer. 

AP: At that time, were you thinking about a longer term, or were Collins and 

Varmus already thinking of a longer-term project – of looking at whole genomes? 

Or…? 

LD: This project was the pilot for TCGA. This project was sponsored by NHGRI. 

So, with the initiation of this project, the leadership at that time has already started 

to think about doing more. That’s why TCGA was launched… this project – the 

tumor sequencing project – really at first was a technical exercise to understand if 

we could do this at a larger scale …the very first TCGA project on glioblastoma 

adopted the exact same strategy, or project design. So, we did 200 tumors, across 

about 600 genes, using targeted sequencing, using Sanger approach. So, that 

paper was also published in 2008. Because we learned so much from the TSP, we 

were able to push the GBM [glioblastoma] a little faster.  (Ding, italics added, 

October 2018) 

 

In other words, TCGA was itself the second generation, the second stage in a long-term 

plan on NHGRI’s part to invest in large scale cancer genomics. And, TCGA itself was an 

iterated process, one that became progressively more sophisticated, incorporating newer, 

faster technology, and requiring the coordinated efforts of several institutions. 

The Cancer Genome Atlas program (TCGA) was a federally funded U.S. research 

program, supported jointly by the National Cancer Institute (NCI) and National Human 

Genome Research Institute (NHGRI). Beginning with a pilot grant of $100 million in 

2006, the aim initially was to sequence the genomes of three major cancers: ovarian, lung 

and brain. With the advent of next generation sequencing, and Obama’s American 

Recovery and Reinvestment Act, following the economic downturn of 2008, the program 

expanded. By 2016, 33 cancers had been sequenced, based on over 11,000 samples. The 



program was officially concluded in 2016, at which point, a total of 18 analyses of 

individual cancer types had been published in landmark papers in Nature and Cell. 

In 2007, then director of the NHGRI, Francis Collins, described the goal of the 

TCGA as “…identify all the genetic alterations in different forms of cancer so that gene 

changes driving the disease can be targeted directly… As each new type of cancer is 

studied and added to TCGA, investigators will gain another rich new set of genomic 

targets and profiles that can be used to develop more tailored therapies.” (Collins & 

Barker, 2007) In addition to molecular classification of different tumor types, the hope 

was that scientists would identify novel mutations associated with different cancer types 

and subtypes, enabling better risk analysis, and prognostic tools, as well as better 

appreciation of mutation rates across cancers, and the extent and nature of heterogeneity 

both within and across different tumor types, as well as shared pathways affected. Collins 

and Barker pointed to examples of successful targeted therapies, such as Gefitinib, as 

having the potential to grow out of this research.  

Examples like Gefitinib, an EGFR inhibitor, used in breast and lung cancers, are 

often taken to be exemplars of the great potential benefits of “genomic” driven medicine. 

However, this is somewhat of a rewriting of history, since many of the drugs identified as 

“precision” therapies were approved for clinical applications decades prior to any efforts 

in cancer genomics, let alone TCGA. For instance, Herceptin (or, traztuzumab), a drug 

that targets receptors in Her2+ breast cancer, was approved by the FDA in 1998. Some of 

the major signal transduction and cell-cycle inhibitors were developed and approved by 

the FDA well before the TCGA. Gefitinib was approved in 2003.  

Inquiry into the causal role of various mutations and pathways in cancer was 

underway long before cancer genomics.3 Indeed, the TCGA is one of the latest of several 

internationally funded research programs in cancer genomics. The Catalogue of Somatic 

Mutations in Cancer (COSMIC), a database of genetic mutations associated with cancer, 

hosted by the Sanger Institute in the UK, has been in operation since 2004. The 

International Cancer Genomics Consortium has been ongoing since 2006. TCGA was a 

 
3 Why these drugs were effective (relatively speaking) and others not requires a much lengthier analysis 

than is possible here. For further discussion of the scope and limits of precision oncology, see, e.g., 

London, et. al., 2019; Kimmelman, et. al., 2015, 2018; Hey, et. al., 2016; Tannock, et. al., 2017; Tao, et al., 

2018; Prasad, et. al., 2016; Schrager, et. al., 2019; Plutynski, forthcoming.  



part of this international consortium, though it was one of the largest projects underway 

at the time, internationally. 

While the goal most widely advertised of the TCGA was to better diagnose and 

treat cancer, there were in fact many different kinds of goals at play in the TCGA. 

Alongside the potential scientific and clinical applications, the TCGA promoted 

improvements in speed, accuracy, and lower cost of sequencing, leading in part to the 

drastic reduction in cost of sequencing an entire genome – from as much as $100 million 

in 2001, to as little as $1,000 in 2016 (Hutter, 2018). Promoting and developing 

productive interactions between the scientists and the biotech facilities developing these 

technologies were central aims of the project. That is, there were economic and 

institutional drivers motivating TCGA. It is not coincidental that the project expanded 

and was completed shortly after Obama’s Recovery act, a central goal of which was 

investment in science and technology. The goal of TCGA was not simply scientific 

understanding. To be sure, the participants hoped for a better understanding of cancer, but 

also saw their project as promoting the development of biotechnology, and of new kind 

of interdisciplinary, team science, development of better methods of sequencing, analysis, 

curation, storage, accessibility and sharing of genomic data. While the latter is surely a 

means to the former, it was not merely in service of the former. The latter goals stood on 

their own as major achievements – among the first mentioned in an interview with the 

program’s director for the last five years of its tenure (Hutter, 2018). 

Ultimately, however, the ostensible aim of the project was to complete genome 

sequences of 33 different cancer types, taking samples of each cancer, paired with normal 

or healthy tissue samples, which served as a “reference” genome for comparison (Hutter, 

2018). The TCGA led to several striking insights into the etiology and heterogeneity of 

cancer. For example, sequencing of the breast cancer genome led to novel 

subclassifications of breast cancers into four major molecular types (Cancer Genome 

Atlas Network, 2012), and comparisons across diverse cancer types led to the realization 

that some cancers arising in different cells of origin shared more molecular similarities 

than cancers arising in the same cells of origin (Hoadley, et. al., 2014). The TCGA’s 

results were made publicly accessible via a portal developed at UC Santa Cruz, the 

Cancer Genome Hub. Developing accessible public cancer genome databases was a key 



element of the program. And, the future was always in view; a second generation “Pan-

Cancer Atlas” project has already mined this data to produce papers on cancer 

classification, overlapping pathways or common “oncogenic processes” across a variety 

of cancers, and a variety of signaling pathways associated with cancer (Hoadley, et. al., 

2018; Malta, et. al., 2018; Ding, et. al., 2018). 

There were many surprises that came as a result of TCGA, but one issue that was 

never in question, one on which the project was founded, was that cancer is “a genomic 

disease.”4 Collins and Barker open their article promoting TCGA with a quotation from 

Dulbecco, “if we wish to learn more about cancer, we must now concentrate on the 

cellular genome.” As Collins and Barker explain, “Since the first identification in 1981 of 

a cancer-promoting version of a human gene, known as an oncogene, scientists have 

increasingly come to understand that cancer is caused primarily by mutations in specific 

genes” (Collins and Barker, 2007, p. 52).  

The ontological commitments or theoretical presuppositions standing behind 

TCGA were that mutations and chromosomal changes are major causes of cancer – the 

“causal bottleneck” through which all processes yielding cancer flow. Mutations are, in 

this view, centrally responsible for cancer cell survival, persistence, invasion and 

metastasis. If we can identify those genetic and genomic abnormalities, we may be better 

able to provide targeted treatments for the disease. These “driver” genes and their 

downstream effects on various pathways or molecular markers might serve as biomarkers 

for prognosis, and potential targets of therapy. Collins and Barker are explicit: if we can 

intervene on these, we may then disrupt the functional disruption typical of cancer cells. 

This explains Collins’ appeal to targeted treatments such as Gefitinib; such successes 

were taken to be one particularly vivid source of evidence in favor of TCGA. 

However, as the TCGA was going on, it became increasingly clear how factors 

outside of the genome play a significant role in cancer initiation, progression, and 

persistence of the cancer phenotype. Though researchers were aware of the role of 

extragenomic factors in cancer long before TCGA, it became better appreciated how (and 

 
4 This quotation comes from Carolyn Hutter, who explains as follows: “it actually messes up the genome 

quite dramatically, you know, a whole giant chromosome arms switch around.” She is referring to the 

chromosomal abnormalities associated with cancer cells. To be sure, this claim can be interpreted in a 

variety of ways (Plutynski, 2018), and might commit one to very different claims in different contexts. 



how much) epigenetics, extra-genomic DNA e.g., microRNA, tissue architecture, the 

microbiome, immune response, and metabolic factors in the extra-cellular environment 

act to promote or halt the progression of disease (Jones, et. al., 1999; De Visser, et. al., 

2006; Esteller, 2008; Bissell and Hines, 2011; Vander Heiden, et. al., 2017; Böttcher, 

2019) Indeed, the Pan-Cancer Atlas project is examining how and why these features of 

cancers interact in the progression of disease (Ding, 2018). 

Nonetheless, there were several major theoretical presuppositions driving the 

methodological revisions to cancer genome analyses: (1) there is a distinction between 

mere “passenger” and “driver” genes in cancer, (2) “drivers” play a distinctive causal role 

in the initiation and progression of disease, (3) identifying these drivers will provide ways 

to identify optimal targets for intervention, or treatment, as well as biomarkers for patient 

stratification, or risk assessment in prognosis and treatment decisions, and (4) there are 

many genes already known to be associated with cancer, which we ought to find 

representatives of in our samples of various tumor types and subtypes. Each of these 

assumptions were in play, both in driving what was expected to be discovered by the 

sequencing efforts, and in interpreting what was discovered. Attention to the tissue 

architecture, its influence on mutation rates typical of the diverse cancer types, or role in 

shaping tumor microenvironment, was just not on the table as relevant to the analysis. 

While the initial goal was 500 samples per major cancer type, in some cases (for 

rare cancers, or cancers where storage or access was exceedingly difficult or expensive), 

fewer samples were identified (50-100), due to difficulty in acquisition of samples of 

these rare diseases, or poor quality of samples, in some cases.5 According to Carolyn 

Hutter (Hutter, 2018): 

 

Initially, the idea was to do twenty cancers, five hundred cases per cancer. And, to 

then to get to 10,000. And, the truth of the matter is that sample acquisition is 

challenging. You know, you needed to have samples that had the right quality, the 

 
5 Different quality samples has to do with whether the biopsies were gathered, tracked, and stored in 

consistent ways, and had more or less non-cancer cells included (stroma are the tissue surrounding the 

cancer, and affect the analysis), among many other factors. The standards for storage and analysis of tumor 

biopsies themselves evolved as TCGA went on. Initially biopsies were Formalin-fixed paraffin-embedded 

(FFPE). However, these were eventually considered an unreliable source for gene expression analysis due 

to the partial RNA degradation. Fresh-frozen (FF) samples were later found to be more reliable and largely 

unaffected by the storage time. 



right consent, all of the details that came along with it… in some cases, getting 

500 qualified cancers could happen. And, in some cases getting 500 qualified 

cancers didn’t happen. And, so, there were some changes. One of the changes that 

did happen was the rare cancer project. So, upping the number… But, then when 

we went for rare cancers – you know, the target for rare cancers was really the 50-

100 range. (Hutter, interview, August 2018) 

 

The “characterization” (or, analysis of the genomic data gathered) was completed “on 

time,” in 2015, and the last marker paper – a consensus statement of the genomic features 

of each cancer type – published in 2016. These papers were the central publications 

growing out of TCGA: marking completion of the breast, thyroid, prostate, etc., genome. 

Though, the “completeness” of the analysis was only in light of agreed upon standards, 

which shifted as the process evolved.  

To clarify, cancer genomes are consensus objects – samples of dynamic, 

heterogeneous classes of disease processes. That is, each cancer is a population of cells 

that changes over time, acquiring novel mutations as the disease progresses (Greaves, et. 

al., 2010; Frank, 2007). How and how much cancers change over time was – at least 

initially – unknown. Initially, on the supposition that mutations of major effect both 

initiated cancer, and were retained throughout this dynamic process, samples were taken 

at first diagnosis. However, as TCGA went on, it became increasingly clear that tumors 

might become more heterogeneous over time, acquiring changes may play important 

roles in invasion and metastasis. Thus, while initially samples taken at first diagnosis 

seemed appropriate, the current view is that for genuinely “targeted” therapy, a patient 

should have samples taken at several stages in the progression of the disease (Lee, 2019; 

Gyanchandani, 2018).  

In other words, the completed genome at publication was founded on consensus 

sampling standards, which were context sensitive in two ways: (1) with respect to the 

current understanding of the disease and methodological/technological advances; and (2) 

with respect to distinct goals – scientific and practical. For instance, the depth of reads 

(how many copies of sequence one generated to line up sequences) was 30X at the 

beginning of the project. Today, some researchers estimate that for cancer, the depth of 



reads should be as high as 150X, if we wish to get accurate measures of the most 

significant genes playing a role in the disease (Griffith, et. al., 2019).6 

In sum, the TCGA was in service of many (and open-ended) goals, and standards 

of achievement of these goals changed as the technology and knowledge advanced. 

Cancer genomics is in this way a kind of “discovery” science – in part, confirming and 

deepening understanding of what we already knew, but also raising many questions, 

suggesting novel hypotheses, and forcing refinement and reframing of goals. Stumbling 

blocks or challenges were to be expected. Below I consider a concrete example of one 

challenge that arose in the analysis of cancer genomes, but first, I offer a bit more 

background on the nature of the project itself. 

 

3. Scientific Background: What Does it Mean to Sequence a Cancer Genome?  

 

There are (roughly) two steps along the way to the generation and analysis of a 

consensus cancer genome. First, “mutation calling” is a technique whereby one identifies 

the mutations in a single cancer; or, a mutation caller is a “classifier asking at every 

locus, ‘Is a mutation here?’” (Getz, 2015). Mutation calling involves identifying which 

variants are unique to a specific patient, and which are mere artifacts. The estimate 

depends on a variety of factors: the allelic fraction (how much of the DNA in a sample 

comes from tumor cells, and how much from healthy cells), the extent of “coverage” of 

sequence of both tumor and normal (reference) genome, and the extent of noise 

introduced in sequencing alignment methods. The aim is to represent the likely number of 

“hits,” or “driver” mutations. Li Ding explains as follows: 

 

… we’re comparing the cancer sequence in the tumor cells to the normal cells in 

that same individual. And you can almost line them up and see where do they 

differ. And, where they differ is a mutation. So, mutation calling is the act of 

lining them up and seeing where they differ. Now, if genomes were ten base pairs 

long, that would be easy. It’s like, here’s my ten base pair normal, here’s my 

 
6 This is something specific about cancer that demands an increased depth of reads (30X is adequate for 

normal genomes). What’s distinctive about cancer genomes is that they are more heterogeneous, and so it’s 

important to have a higher replication of alignments to ensure that the reads are not false positives. 



normal, where do they differ. But, mutation calling becomes more complicated 

because you have to then make these calls based on the sequence that you have, 

and so you have to make sure: “Did I accurately call the normal sequence 

correctly? Did I accurately call the tumor sequence correctly?” If it’s a base pair 

mutation, sometimes that’s easy to do. But, sometimes we have…  

[AP: Inversions? Deletions?]  

Ding: Right. And, what happens in cancer … cancer is a disease of the genome, 

and it actually messes up the genome quite dramatically, you know, a whole giant 

chromosome arms switch around. So, you have to reconstruct these large scale 

and small scale structural variations. You have to reconstruct all of that to even be 

able to line it back up – to compare it… So, mutation calling in the somatic 

contexts becomes taking the information you have about the germline, taking the 

information you have about the tumor sequence, and identifying what are the 

differences. What has happened? How does the tumor sequence look different 

from the germline sequence? So, there’s different programs, and different 

mutation callers that people have used to do that, for structural nucleotide 

variants, for structural variations, for larger rearrangements. And, they’re just 

computationally slightly different and they have different assumptions, etc. And, 

what’s generally been found has been that the best thing to do is use more than 

one approach and come to a consensus call. (Ding, 2018) 

 

Typically several different mutation calling methods are used, and a consensus is arrived 

at. That is taken to be the “consensus” found in a particular individual. This data from 

each paired normal-tumor sample is then compiled and analyzed to generate the 

“molecular landscape” of a cancer. These are the “driver” mutations taken to be typically 

associated with all cancers of a specific type or subtype: prostate, breast, etc.. Algorithms 

are used to estimate their significance, in part in light of relative frequency, but in part in 

light of data already available from cell and molecular biology about the causal roles of 

specific genes in cancer, what are called “candidate” drivers.7 This process of using 

 
7 Candidate drivers are either well-known to be associated with the cancer phenotype, e.g., they play 

important roles in the activation of the cell cycle (birth and death) (e.g., TP53), cell division and repair 



algorithms to identify driver genes is called the ‘characterization’ of a cancer genome – 

yielding the “consensus” genome published in the marker papers. Each cancer genome 

was analyzed using a variety of evolving, ever more refined tools for aggregating the data 

generated from individual sequencing and mutation calling. 

Prior to second generation sequencing, this was done with a baseline assumption 

of average mutation rate per cancer type, which was itself averaged based on the sample 

taken (cf. Lawrence, 2010, p. 2). This assumption, however, led to some difficulties. 

What needed to be considered – in addition – was the variation of mutation rates within 

and across cancers, as well as the heterogeneity in type of mutation and mutation 

frequency in different parts of the genome. It was only after the cancers had been 

sequenced that analysts could know, as a matter of fact, how heterogeneous the 

mutational landscape of cancer is. 

Indeed, arguably, those who initially planned and designed TCGA couldn’t have 

known exactly how many samples to take of each cancer without appreciation of the 

mutation rate and heterogeneity of mutation dynamics across cancers. It was something 

that needed to be learned – in a boot strapping fashion – by carrying out the process of 

sequencing, itself. In response to persistent queries about how they determined 

appropriate sample size for the AML genome, Ley explains: 

 

No one knew what the sample size needed to be when we started. No one had a 

clue. We did not know the mutation rates for AML samples going in. So, the 

estimate of sample size was done post hoc… We looked at the first couple of 

dozen cases had been done… and our idea was simple: can we model the number 

of cases that we’d need to sequence to identify 95% of the mutations that occur in 

 
(BRCA I, II), based on prior work in cell and molecular biology, as well as family history (e.g., APC was 

discovered in part, in light of mutations in this gene associated with Li Fraumeni syndrome), or, any gene 

that appears mutated at high frequency in many cancers, though high frequency per se is not viewed as 

sufficient to count a gene “in.” Second and third generation algorithms were developed that took into 

account not only frequency, but also “built in” information about relevant functional role – genes were 

weighted more heavily that were known to play roles in cell birth, death, or accuracy of replication. As the 

process went on, researchers identified several mutations that were arguably false positives. For instance, 

being a large gene and thus a large target, or, more subject to mutations due to the timing of its replication 

during the cell cycle, etc. increasingly were ruled out. See below for further discussion. 



at least 5% of patients? Based on the sequencing of the first 24 AML genomes, 

we calculated that number to be 200, and it was on the money. (Ley, July 2018) 

 

In response to similar questions about sample size for the lung cancer genome 

characterization, Govindan (who worked on the lung cancer team) explains that 

pragmatic factors played a role: 

 

… the sample sizes are somewhat arbitrary… In fact, I can speak with more 

confidence about lung cancer. The main thing is… for lung [cancer], there was a 

decision made to do 500 / 500 [each of each type of lung cancer]. It’s a round 

number. There are two common types of lung cancer: adenocarcinoma and 

squamous cell. So, you know, 500/500. … 500 seemed like a doable number. So, 

that’s how the decisions were made to the best of our knowledge. I led the TCGA 

lung cancer project… but things were beyond our decision making, and the NCI 

did that. Also, remember, the cost of procuring specimens – not just the cost of 

sequencing – was pretty high at the time… The money factors in too. So, they had 

a bunch of money, and they wanted to sequence some tumors, and they had to 

make a decision. (Govindan, July, 2018 (inserted parentheticals are mine)) 

 

In fact, one of the earliest challenges in TCGA was obtaining high quality samples. 

Initially, samples of glioblastomas were not of sufficiently high quality to generate 

adequate data for sequencing (Peterson, pers. com., 2018) It was this matter of quality 

and annotation that was most on the minds of researchers at the beginning stages, not 

necessarily quantity of samples. This, in addition to adequate annotation of patients, 

turned out to be one of the most time consuming (and not coincidentally, expensive) 

aspects of the program. Tim Ley commented, as follows: 

 

One of the great myths of cancer genomics is that grants usually pay for the 

collection and clinical annotation of samples, in addition to sequencing and 

interpretation. The sequencing is now less expensive than annotating the samples 

and the information about the patients.. It costs us far more money to bank and 



annotate AML samples than it does to sequence their exomes. … At any given 

time, we are following hundreds of patients with acute leukemia or 

myelodysplastic syndromes so that understand outcomes for every patient. The 

costly part now– the part that tends to be underfunded– is collecting the samples 

and annotating the cases…(Ley, May 30, 2018) 

 

So, at the outset, TCGA participants were primarily concerned with quality of samples. 

Concerns about sample size were less central, in part because it was not even clear at that 

point what an adequate sample size might be, and in part because the assumption was that 

more and better sequencing would be possible as expense and technology improved, 

leading to ever larger and more comprehensive samples of similar cancer types. Indeed, 

Ding argues that there were several phases of TCGA, with early phases more like an 

extended pilot, experimental phase, and the latter stages built on this: 

 

I define TCGA as three phases: the early phase was GBM and ovarian, so from 

2005 to 2010. Then between 2010 and 2016, I call that the production phase. 

TCGA was in a very stable productive phase, and we were able to publish 

multiple marker papers per year. 

… when you think about it, the early phase of TCGA: we spent… For example, 

for the GBM project, the entire consortium worked on one project, one tumor 

type, one paper, for almost four years. But we were busy, because we were trying 

to figure out how to do this right. Project design: how to get patients’ samples in 

place. We had a lot of conference calls, a lot of meetings to debate about how to 

do this right. Sometimes it could be heated discussion, but very productive, 

because we need to hear different opinions … how to do this project right. 

Without these discussions, we weren’t going to have this nice smooth signaling 

production phase. Then, for ovarian cancer like I said: we threw all the 

technology at this cancer type. For this sequencing project was a mixed bag. But I 

think it was very helpful for the consortium, because if we did not do ovarian 

cancer, we wouldn’t know which was the best strategy for moving forward for the 

rest. So, I think those two projects were very important for TCGA. That is why I 



call that early phase TCGA. Then, we got into this nice stable productive phase, 

generating multiple papers a year. (Ding, 2018) 

 

The goal was, at least insofar as TCGA was concerned, to arrive at a preliminary 

“consensus” sequence by compiling mutation calling data on many different patients – 

how many were necessary was at this point an open-ended matter. How then was the data 

compiled to generate a consensus sequence? When and why were consensus sequences 

agreed upon? 

The answer depends upon the date of publication of the consensus sequence. That 

is, the grounds for consensus – depending as it did on evolving criteria of adequacy of 

samples, as well as methods of analyses and the details of the cancer type or subtype – 

were not fixed. Methods of reaching consensus were refined as the process went on – 

from the first consensus sequence (of glioblastoma) to the last (adrenocorticalcarcinoma). 

Different genomes of different cancer types relied upon new methods of analysis as they 

became available, often arriving at a consensus given overlapping results from several 

different methods. 

 

4. Stumbling Blocks: the Karenina Paradox 

  

Although there are many challenges facing analysis of cancer genomes, the focus 

here will be on one particular challenge, arising from the distinctive heterogeneity of 

cancer genomes. In a 2010 commentary in Nature, Meyerson, et. al., nicely sums up this 

challenge in his paraphrase of Tolstoy’s Anna Karenina: 

 

… normal human genomes are all alike, but every cancer genome is abnormal in 

its own way. Specifically, cancer genomes vary considerably in their mutation 

frequency,… in global copy number or ploidy, and in genome structure. These 

variations have several implications for cancer genome analysis: the presence of a 

somatic mutation is not enough to establish statistical significance as it must be 

evaluated in terms of the sample specific background mutation rate, which can 

vary at different types of nucleotides ... The analysis of mutations must also be 



adjusted for the ploidy and the purity of each sample and the copy number at each 

region. (Meyerson, et. al. 2010)  

 

To clarify, at the time Meyerson and colleagues’ paper came out, the first round of 

sequencing data had just come in, and the first “pilot” genome, glioblastoma, had been 

sequenced, analyzed, and the consensus genome published. Data was already 

accumulating on AML, ovarian, and lung cancers. Meyerson and colleagues were 

reflecting on the novel task of analyzing what Ley called a “firehose” of data (Ley, 

2018). There was a great deal more complexity and diversity to the information than 

anyone had anticipated, and the challenge was to separate signal from noise, or to identify 

the most significant mutations associated with cancer types and subtypes.  

Prior to TCGA, the assumption was that there would be about five to eight major 

mutations per cancer type that played a significant role in capacities typically associated 

with growth and successful survival of cancer cells: evading immune detection, attracting 

a blood supply, replicating without limit, invading neighboring tissue, resisting apoptosis, 

and so on (Ley, 2018). These were the “driver” genes. While the origins of this term are 

somewhat obscure, Stratton et. al. (2009) use the term “driver” to refer to mutations that 

“confer growth advantage on the cells carrying them and have been positively selected 

during the evolution of the cancer.” In contrast, mere “passengers… do not confer growth 

advantage, but happened to be present in an ancestor of the cancer cell when it acquired 

one of its drivers” (2009, 722). That is, Stratton seemed to assume that functional role 

and the selected effects of drivers would necessarily coincide, but they need not. 

Estimates of the number of drivers typical of each cancer type were drawn from patterns 

of age of incidence and were believed to range from 5-7 mutations per adult epithelial 

cancers, though it was believed that haematological cancers may require fewer. That is, 

waiting time to cancer was clearly a function of age, and so it was believed that cancer 

was a product of the cumulation of rate-limited mutation events (Frank, 2007; Miller, 

1980).   

In addition, experimental (knockout) studies also appeared to show that 

engineering changes in the functions of at least five or six genes in normal primary 

human cells is necessary to convert them into cancer cells (Schinzel, et. al., 2008). It was 



these mutations that targeted treatment aimed to intervene upon. Such genes were 

“actionable,” and so knowing which ones were the major players in cancer was 

exceedingly important. But, the very concept of a “driver” gene was in flux during this 

decade. Indeed, in part as a product of the process of TCGA, it became apparent that 

there were many more genes involved in cancer, but it was (at first) impossible to know 

which genes were most important. At first, the assumption was that with larger sample 

sizes, one would better be able to refine estimates and identify specific mutations 

significant for each cancer. However, paradoxically, the opposite turned out to be the 

case. 

In part, this was because (as we have discussed), participants in TCGA were 

involved in ongoing refinement of algorithms and techniques used to identify drivers. 

Different algorithms deployed different presuppositions about the relative significance of 

various drivers. Moreover, technical artifacts, or results based on mistaken assumptions, 

tools, or techniques, were sometimes only uncovered after repeated instances of 

counterintuitive results. By way of example, initially some genes were identified as 

“drivers” that were in fact, simply larger “targets” – genes for which it was easier or more 

likely to acquire “hits.” That is, especially large genes (with no apparent functional role 

in cancer) appeared more likely to acquire mutations. Govindan (2018) describes an 

example: 

 

… in the early days of cancer genome sequencing, one of the most common one 

that popped up was a gene called Titan. And, Titan was properly named Titan, 

because it was the largest gene. You know… it was mutated in every cancer. 

Later on, it became obvious that it was mutated because it was a large gene. So, 

the larger the gene is, there are more chances of it having a [mutation]… it’s like 

you walking around with a target, and the larger you are, the more chances you 

will be hit. You know, it took a while to appreciate that. There are a lot of 

passenger mutations in cell populations that are present in the genome, and the 

larger the gene is, the greater the chances are going to be … [that it will be 

mutated]. So, then we learned to correct for gene size, and the variations of 

different things that came in, too… and, that took away a lot of noise. Basically, 



the first level is technical artifact … there were a lot of alterations in a gene that 

don’t do anything… in the early part the fact of the size of the gene matters was 

one of the insights that came about… (Govindan, 2018) 

 

While such difficulties as gene size serving as a confounding factor were eventually 

identified and corrected for, a rather different problem was the dramatic number of 

apparently significant mutations with increasing sample size. The expectation was that 

with more samples and better sequencing, a stronger signal would be present, indicating 

the most significant mutations in each cancer. But, with more samples, paradoxically the 

number of mutations associated with each cancer appeared to increase. Tim Ley 

describes this growing realization in the context of AML: 

 

… in the second genome that we sequenced, that was that whole theory sort of 

came off the rails for us. Because, the second patient that we sequenced was 

normal karyotype AML, and now we had done a whole genome with much 

greater detail, using paired-end reads. The sequencing technology was better, and 

we were a lot more confident about the coverage of the number of mutations we 

were detecting. So, here we were in this particular genome, and we could start 

ordering the events of the cancer. We could tell how many mutations were present 

in all the cells of the tumor. And that number was more than 500. And then we 

had to say to ourselves, “ It’s impossible that there are 500 mutations that are 

relevant for this cancer. So, was kind of a moment of truth for us, and how people 

think about how passenger mutations evolve, and where these mutations come 

from…(Ley, 2018) 

 

Ley and colleagues had assumed that very few mutations were necessary for AML; 

hematopoetic cancers by and large were assumed to be associated with far fewer 

mutations. Thus, most of these 500 mutations had to be “noise” or “passengers” – 

alterations in the genome of cancer cells that play no role whatsoever in cancer’s 



etiology.8 Ley (2018) describes the going alternative theories to explain the excess 

mutations discovered in the case of AML: 

 

…there are only a limited number of things this could be: 

- One possibility is that this is a “big bang” in one cell… there’s an explosion of 

mutations that occurs in one cell at one moment in time. They all move forward 

together as an entity of one, and something about that cell acquiring all those 

mutations on that one day… that “experiment of nature” succeeds, because there 

are several mutations that are relevant that occur to that cell. Maybe this is a 

process that is going on all of the time—but you only detect the events that are 

successful in producing a new cell that has a significant growth advantage. And 

we call this AML. 

- Another possibility that was unsatisfying was the possibility that it really was an 

evolutionary process, but it took 500 events. Nobody liked that idea. That just 

seemed, like… How would you ever get a cancer if there were five hundred 

events that had to occur for it to be successful? 

…The third possibility (which is probably the correct one) was that nearly all of 

the detected mutations had to antecede the relevant mutation. They had to occur 

over time. And, they were random mutations that were occurring as a function of 

time. They were falling in places that were irrelevant for the function of the 

transformed cell, and they were essentially being “captured” by selection for the 

cell with the relevant mutation. (Ley, 2018) 

 

In AML, Ley argued, these excess mutations were accumulated simply as a byproduct of 

errors that occurred during hematopoetic stem cell divisions, over the course of a 

lifetime. In a paper published in Cell in 2012, Ley and his colleagues John Welch and 

Daniel Link demonstrated that one could use the number of stochastically accumulated 

mutations in hematopoetic cells as a kind of molecular “clock,” representing age of the 

 
8 To be clear, I’m not here endorsing Ley’s reasoning, simply recapitulating it. Ley is assuming that all 

passenger mutations are in fact “noise” – that is, they are just those mutations that have no mechanistic link 

to the behavior of cancer cells. A mutation that does have such effects (e.g., a mutation that leads to 

problems with cell repair during replication, e.g., BRCA I or II) is by definition a “driver” mutation.   



patient (Ley, et. al., 2012). That is, each individual has a certain number of mutations 

acquired over the course of their lifetime in hematopoetic stem cells.9 These serve as 

markers of age, since rate of mutation per stem cell is a constant, and hemopoetic stem 

cells divide at a regular rate, as we age. 

The question then became: did this explanation of the accumulation of mutations 

also explain the apparent excess in mutations found in other cancers? Could one extend 

this explanation for the apparently excess mutations in AML to all cancers? Were all 

these excess mutations simply byproducts of stem cell division across all tissues? Or, 

were they acquired over the course of cancer development, perhaps due to the 

characteristic chromosomal or genomic instability of cancer cells in solid tumors? Last 

but not least, which of these apparently significant mutations were either artifacts of 

either sampling methods, or insufficiently fine-tuned analysis of the data? In sum, this 

new influx of data led to a whole series of debates in the literature about the dynamics of 

cell division in development, and what role it played in the heterogeneity of cancer. This 

led to a related debate about the relative proportion of cancer risk was down to “luck” – 

for, cancer risk is orders of magnitude higher in some tissues and organs (e.g., epithelial 

cancers) than others (e.g., bone and brain). The former were, arguably, largely byproducts 

of mutations acquired in somatic stem cell division (for recent discussion, see, e.g., 

Tomsetti and Vogelstein, 2015, 2017; see also, Wu, et. al., 2016; Nowak and Waclaw, 

2017). 

While the relative role of chance mutations acquired during stem cell division in 

cancer is still contested, it was clear to almost everyone that a significant proportion of 

mutations identified as “cancer genes” using then-current methods were simply 

“passengers” – understood as mutations that appeared to play no functional role in 

cancer. Lawrence, et. al., write, (2012) “when we applied current analytical methods to 

whole-exome sequence data from 178 tumor-normal pairs of lung squamous cell 

carcinoma, a total of 450 genes were found to be mutated at a significant frequency... 

While the list contains some genes known to be associated with cancer, many of the 

genes seem highly suspicious based on their biological function or genomic properties.” 

 
9 To be sure, the idea that cells acquire mutations as we age, due to stem cell division, was at that point well 

known. The insight of Welch and Ley was the particular link between age and mutational profile of AML. 



For instance, mutations in genes associated with olfactory receptors, muscle proteins, and 

the Parkinson protein were not likely to be significantly associated with cancer. 

Which mutations were the genuinely significant ones, and why do more 

significant genes appear to crop up as sample size increases? Lawrence, et. al., summed 

up the problem: 

 

… we describe a fundamental problem with cancer genome studies: as the sample 

size increases, the list of putatively significant genes produced by current 

analytical methods burgeons into the hundreds. The list includes many 

implausible genes (such as those encoding olfactory receptors and the muscle 

protein titin), suggesting extensive false positive findings that overshadow true 

driver events. Here, we show that this problem stems largely from mutational 

heterogeneity and provide a novel analytical methodology… 

The expectation has been that larger sample sizes will increase the power both to 

detect true cancer driver genes (sensitivity) and to distinguish them from the 

background of random mutations (specificity). Alarmingly, recent results appear 

to show the opposite phenomenon: with large sample sizes, the list of apparently 

significant cancer genes grew rapidly and implausibly… We hypothesized that the 

problem might be due to heterogeneity in the mutational processes in cancer. 

While it is obvious that assuming an average mutation frequency that is too low 

will lead to spuriously significant findings, it is less well appreciated that using 

the correct average rate but failing to account for heterogeneity in the mutational 

process can also wreak havoc… (Lawrence, et. al., 2013) 

 

The source of the problem, according to Lawrence, et. al., was in part the extent of 

heterogeneity in mutation rates and mutational landscape across and within different 

tumor types, and in part, not taking this variation into account in the analysis of genome 

data. By not considering the heterogeneity of rates and types of mutation events across 

different cancer types in the analysis, they overshot the estimate of driver genes. Three 

different types of heterogeneity were relevant to the extent of false positive (and 

negative) results: 



 

• Heterogeneity across cancers, and across patients of a cancer type 

• Heterogeneity of mutation spectrum (rate/types of mutation, e.g., from CT, or A-

G) 

• Heterogeneity across the genome, in extent and character of mutations 

 

It turned out that with more samples, the signal to noise ratio made the tests of 

significance too sensitive, thus identifying too many mutations as significantly associated 

with cancer. The extent of and nature of heterogeneity of mutation rates and total 

mutations across cancers complicated the analysis of the data. With mutation frequency 

across cancer types differing by as much as three orders of magnitude, and even within 

cancers by as much as two, the analysis required fine tuning tests of significance to 

specific cancer types and subtypes. In addition, the heterogeneity in type and location of 

mutation needed to be included in the analysis, in order to correct for the over-counting 

problem. 

Without knowing what the baseline number and rate of different types of 

mutations across different cancers, it would be enormously difficult to determine the 

frequency of mutations of significance for each cancer type and subtype. But, the 

scientists could not have know the extent of heterogeneity in mutation rates and types 

across cancer without doing the sequencing in the first place. Fine tuning the methods of 

analysis of the data were only possible after one had the data and analyzed it (incorrectly) 

at first. This is a vivid example of “scaffolding” future science – or, boostrapping. 

Without knowing the sample space, and the character of your sampling instruments, you 

cannot know what and how to evaluate your results. But, you cannot know how your 

instruments work without taking some samples in the first place.  

 

5. Conclusions. 

The case of TCGA provides yet another instance of a challenge to the purported 

sharp divide between “data driven” and hypothesis driven science. Indeed, this challenge 

has been pointed out in other instances of big data science – from model organism 

research, to Dayhoff’s atlas of protein sequences, to museum collections (cf. Leonelli, 



2016; Strasser, 2019). TCGA was – in large part – a pilot project: they were learning how 

to collect, annotate, store and track high quality samples, garnering a sense of the 

sampling size appropriate for cancers of different types and subtypes, developing 

technologies and methods of analysis, building online platforms for accessing and sharing 

data, and coordinating the efforts of hundreds of clinicians, biostatisticians, geneticists, 

and computer scientists at major institutions around the U.S.. Simply learning how to 

gather, store, and process (more or less) high quality samples, let alone master new 

methods of high throughput sequencing, and analyze the results was at the core of the 

project for the first five years of TCGA’s tenure. 

The project ran into stumbling blocks, and while many were expected, some were 

unexpected. Learning how to coordinate research, agree upon common standards for 

sampling and storage of biopsies, as well as correct for batch effects in sequencing and 

develop common algorithms for analysis were all unsurprising. More surprising, 

however, was that as more samples were taken, the number of driver mutations seemed to 

climb, far more than was expected initially. While it may have initially seemed a paradox 

that there were more false positives with larger sample sizes, the paradox resolved when 

TCGA researchers re-thought their presuppositions about the base rate of mutations in 

different cell types, in different tissues. The reason for this paradoxical result, in other 

words, was that the researchers were making a (slightly more complex) version of the 

base rate fallacy. This is the fallacy of failing to take into account the “base rate,” or rate 

at which events typically occur, in one’s analysis. In estimating the number of drivers in a 

cancer type, they had overestimated the number of significant events because they 

initially underestimated the mutation frequency of particular types of genes (large genes, 

etc.), as well as the background rate of mutations and types of mutations in different 

cancer types (in cells or tissues with high rate of turnover). Incorporating this knowledge 

allowed them to arrive at a more conservative (and likely, more accurate) estimate of the 

number of driver genes typical of cancers of various types. 

This example illustrates a larger, more fundamental challenge to the notion that 

data can simply “lead” in big data research. Genomic research such as this began with 

some fundamental assumptions about how and why cancer behaves as it does, 

assumptions that more or less reduced cancer causation to the activity of genes. But, the 



assumption that a handful of major genes might be sufficient to generate future research 

into major pathways “for” cancer, in service of both stratifying patients and identifying 

therapeutic targets, became increasingly less plausible as the project wore on. It became 

increasingly clear that there is no direct, one-to-one causal pathway by which these genes 

act in the process of cancer progression. Genetic mutations are one, and only one, 

component, in a complex network of causal pathways, shaping the course of disease. 

Complex interactions with the immune system, the microbiome, tissue architecture, 

hormonal factors over the course of development (as well as during pregnancy and 

nursing), and much else, act together in modifying mutations’ roles in cancer progression. 

Indeed, investigating these extra-genomic, interactive factors involved in gene expression 

and cancer dynamics has been a central goal of the next generation of the “pan-cancer 

atlas project”: the investigation of the cancer “epigenome,” “immune landscape” and so-

called “cancer microbiome” (Dayson, 2017; Thorsson, et. al., 2018; Sepich-Poore, 2021). 

Many of the genes identified in TCGA have now been identified as either activated by 

the immune system, or interacting in complex ways with the microbiome, shaping disease 

course, or response to treatment. This realization has led to a more integrative approach 

to investigating cancer.  

Thus, arguably, the cancer genome project has itself led to a shift away from 

treating mutations as causally central in cancer, toward a more integrative, multifactor 

theoretical ontology in cancer. This shift in the ontological centrality of genes follows the 

theme of many big data projects. For instance, Leonelli (2012) has argued in the context 

of model organism research that bioontologies – such as the gene ontologies developed  

based on shared functional roles of genes in model organisms – is “constantly modified 

depending on the state of research and the interests of their users” (Leonelli, 2012). 

Likewise, Strasser (2019) demonstrates how – going back to the early 20th century – data 

collection can transform the questions we ask, and the categories we treat as central, not 

simply “testing” theories, but reframing how we understand what we ought to treat as 

central, in virtue of the very challenges faced by those attempting to put together 

systematic and usable collections of data.  

In this way, both Leonelli and Strasser challenge the notion that “big data” 

research is a new kind of science. Leonelli (2016) argues that the model organism 



research she focuses on is not “data driven” research, so much as a “data-centric” 

research. Hypotheses are at work at every stage in the classification and analysis of data. 

While this is not “experimental” science in the sense typically understood, it carries 

similar implications for reform of our theories. Likewise also, the above historical 

reconstruction of some episodes in TCGA’s process of inception and response to 

challenges illustrates how various presuppositions about the central causal role of 

mutations in cancer were developed and refined. It would be a mistake to say these were 

“hypotheses” per se about the likely number and role of driver genes in cancer. The view 

that each cancer was “driven” by a small handful of mutations to specific genes was not 

purely “hypothetical” in the open ended sense of, “mere guesses.” Rather, they were the 

presuppositions of the entire project, the product of multiple lines of research that had 

been ongoing for decades.  

The extent of heterogeneity among cancers, and the sheer number of driver genes 

identified, was – at least by the lights of many of the researchers’ accounts – surprising. 

They did not take into consideration a further presupposition: namely, the variety of 

background rates of mutation. Taking this into account in turn required them to rethink 

their conception of a “driver” gene. But, the concept of a driver is still a concept in flux. 

What it means to “control” or “drive” cancer has arguably become less rather than more 

definitive as a result of TCGA, as it has become more clear how heterogeneous not only 

cancers, but also the roles of genes in cancer progression, and the causal pathways 

involved in cancer, all are. There is a growing awareness that genes have both direct and 

indirect effects, that there are epigenetic factors that play important roles in gene 

expression in cancer, and that there are interactive effects between both genes, and the 

tissue microenvironment, that change over time, and are highly context sensitive. 

Mutations might play different roles over time; what and how they “drive” cancer is not a 

simple matter. 

Yet, perhaps they ought not to have been so surprised by the extent of 

heterogeneity, and the lack of easily assignable causal mappings between genes and 

cancer phenotype. Developmental biologists have long known that different types of cells 

in different tissues differentiate in different ways, at different rates. Moreover, they’ve 

long been aware that tissue architecture varies across tissues and organs (Bissell, et. al., 



2011). A skin or lung or breast cell, before maturing, will divide a different number of 

times, and some cells in some tissues have higher rates of turnover, and senesce sooner, 

some later (Tomasetti, et. al., 2017). Indeed, this is no accident, but a finely tuned product 

of evolution. Cell, tissue, and organ development and differentiation requires tight 

regulation. So, the fact that different types of cancer might have different mutation rates, 

types of mutation, and thus extent of heterogeneity should not have been all that 

surprising. 

Moreover, that there would be subpopulations of coevolving lineages in a tumor – 

and thus more or less heterogeneity between cancers even of the same subtype – should 

not have been surprising. In the 1970s, and even earlier, Cairns, Nowell, Doll and Hill, 

and others, had proposed that cancer is an evolving population of cells, with population 

dynamics (see, e.g., Morange, 2012; Frank, 2007; Plutynski, 2013). Taking into account 

the unique features of tissue microenvironment of each cancer type and subtype, anyone 

familiar with the dynamics of evolution in populations would have expected to find a 

great deal of heterogeneity in cancer cell populations. 

Researchers engaged in TCGA were blindsided by the extent and nature of 

heterogeneity discovered in cancer cells perhaps in part because the “product” oriented 

framing of the research emphasized identifying “driver” mutations, which presumably 

were more focused targets of “actionable” drugs or other forms of intervention. This 

encouraged black boxing the environment in which cancer cells of different types, in 

different tissues and organs, found themselves. Only by incorporating this information 

were they in a better position to identify those genes most likely to play a significant role 

in cancer progression, versus those that – for instance, in AML – were simply a 

byproduct of stem cell division in hematopoetic stem cells as we age. Perhaps similar 

causes were driving the number and rate of mutations in different cancer types and 

subtypes. The question that comparison across cancers raises is whether, and to what 

extent, similar processes are driving different amounts and rates of acquisition of 

mutations in different cancers. 

What TCGA illustrates is not a “new” kind of science, per se, but a very old 

process of iterated refinement of research questions, and generation of novel and more 

fine-grained hypotheses. It also illustrates the practical challenge of drawing upon and 



integrating information across disciplinary divides. Focusing exclusively on one temporal 

and spatial scale can lead one to fail to predict complications and confounding causes of 

new discoveries. At the same time, reductive approaches can be heuristically useful, in 

that they enable the discovery of novel ways of framing research, and new questions one 

could have not anticipated without the new data. 

To be sure, this is no small matter of relevance only to the basic scientists. The 

ambitions of precision oncology – targeted therapies for the many patients still suffering 

– depend in large part on quality and validation of purported cancer biomarkers, or 

molecular features associated with specific cancer mutations. The translation of this basic 

research into applications that enable precision patient care raises yet further practical and 

empirical challenges that provides ample opportunity for critical reflection on both big 

data science, and interdisciplinary, translational research – from bench, to bedside – by 

future historians, philosophers and social scientists of biomedicine, some of which is 

already underway (cf. Chin-Yee, et. al., 2019; Laplane, 2017, Fagan, 2016; Green, et. al., 

2021; Vogt, et. al., 2019). 
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