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Value-at-Risk (VaR)

Definition

We follow the usual convention on risk measures (that originally appeared in
insurance) by considering the loss variable L = −P&Lt,t+h.

Definition
Given a loss portfolio L over a time horizon h, and with cumulative distribution
function (c.d.f.) FL, we call Value-at-Risk for a confidence level α ∈ (0, 1),
denoted VaRα(L), the smallest value having a probability smaller than 1− α to
be lost, i.e.:

VaRα(L) = inf{ℓ ∈ R : P(L > ℓ) ≤ 1− α} = inf{ℓ ∈ R : FL(ℓ) ≥ α}.

Remarks:
Confidence levels α are often of the order of 95%, 99%, or 99.9% depending
on the context. The horizon h is typically 1 or 10 days (market risk) or 1 year
(credit risk).
VaRα(L) is increasing with α.

Noufel Frikha (noufel.frikha@univ-paris1.fr) Université Paris 1 Panthéon-Sorbonne October 2024 4 / 71



Value-at-Risk (VaR)

Noufel Frikha (noufel.frikha@univ-paris1.fr) Université Paris 1 Panthéon-Sorbonne October 2024 5 / 71



Value-at-Risk (VaR)

Generalized Inverse and Quantile Function
Reminder: The c.d.f. of a random variable X is the function F : R → [0, 1], defined as
F (x) = P[X ≤ x]. It is non-decreasing, right-continuous with left-limit and satisfying:

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

Definition
The quantile function of X is the generalized inverse of its c.d.f. F , defined on (0, 1) as:

F−1(α) = inf{x ∈ R : F (x) ≥ α},

with the convention that inf ∅ = +∞. The function F−1 is non-decreasing and
left-continuous.

For α ∈ (0, 1), the quantile of order α of F is denoted:
qα(F ) = F−1(α),

which can also be written as qα(X) when F is the c.d.f. of the random variable X.
Using this notation, we can express:

VaRα(L) = qα(FL),

where FL is the c.d.f. of the loss variable L.
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Value-at-Risk (VaR)

Some Useful Properties of the Quantile Function

Let X be a random variable with c.d.f. F . The following properties hold for the
quantile function:

(P1) For α ∈ (0, 1), F (qα(F )) ≥ α.
(P2) For α ∈ (0, 1), F (x) ≥ α if and only if x ≥ qα(F ).
(P3) If F is continuous, then F (qα(F )) = α for α ∈ (0, 1).
(P4) Let U follow a uniform distribution on [0, 1]. Then, F−1(U) has the same

distribution as X, i.e., its c.d.f. is F .
Remarks:

If F is continuous, property (P3) shows that F−1(α) is strictly increasing.
If F is continuous and strictly increasing, i.e., invertible, then the generalized
inverse coincides with the usual inverse function.
The generalized inverse is useful in cases where F is not invertible, such as
when F is discontinuous or constant on non-empty intervals.
Property (P4) is the basis of the inversion method for simulating random
variables with c.d.f. F .
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Value-at-Risk (VaR)

Proof of Properties (P1) and (P2)
Proof:

(P1): By definition of qα = F−1(α), it is clear that if F (x) ≥ α, then
x ≥ qα, and moreover, for all n, ∃xn ≤ qα + 1

n such that F (xn) ≥ α. Since
F is non-decreasing, we have F (qα + 1

n ) ≥ α, and so by right-continuity of
F , we deduce that F (qα) ≥ α, which proves (P1).

(P2): Again, since F is non-decreasing, this implies that if x ≥ qα, then
F (x) ≥ F (qα) ≥ α, which proves (P2).

(P3): From (P2), if x < qα, then F (x) < α. With (P1), and if F is
continuous at qα, this proves that F (qα) = α, i.e. (P3).

(P4): From (P2), we have for all x ∈ R,

P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x),

hence, F−1(U) and X have the same c.d.f., and thus the same distribution.
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Value-at-Risk (VaR)

Corollary (Quantile Function of a Transformed Variable)
If g is continuous and strictly increasing on R (hence invertible), then

qα(g(X)) = g(qα(X)).

Proof: Let F be the c.d.f. of X. Then, the c.d.f. of Y = g(X) is
G(y) = F (g−1(y)). From (P2), for all y ∈ R, we have the equivalence:

y ≥ qα(Y ) ⇐⇒ G(y) ≥ α ⇐⇒ F (g−1(y)) ≥ α

⇐⇒ g−1(y) ≥ qα(X) ⇐⇒ y ≥ g(qα(X)),

which shows that qα(Y ) = g(qα(X)).
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Value-at-Risk (VaR)

Example: Properties of Quantiles for Some Functions
For example:

qα(X
3) = qα(X)3

qα(e
X) = eqα(X)

qα(aX + b) = aqα(X) + b, for a > 0

Attention: In general:
qα(X

2) 6= qα(X)2

qα(−X) 6= −qα(X)

If F , the c.d.f. of X, is invertible, then qα(−X) = −q1−α(X).

Application: Affine transformation of VaR

VaRα(aL+ b) = aVaRα(L) + b, a > 0.

Interpretation: The risk measured in VaR of a shares of a portfolio is a times the
risk of one share. Moreover, adding (if b > 0) or withdrawing (if b < 0) an
amount b of this portfolio changes the risk by b.
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Value-at-Risk

Example 1: Gaussian Loss Distribution
Assume that the loss distribution follows a Gaussian law L ∼ N(µ, σ2). Then the
normalized loss L = L−µ

σ follows a centered standard normal distribution, and we
have:

VaRα(L) = µ+ σΦ−1(α),

where Φ is the cumulative distribution function (c.d.f.) of the standard normal
distribution N(0, 1), and Φ−1(α) is the α-quantile of Φ.

Reminder: Φ being continuous and N(0, 1) being symmetric around 0, we have:

Φ−1(α) = −Φ−1(1− α), α ∈ (0, 1).
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Value-at-Risk (VaR)

Example 2: Portfolio of Stocks
Consider a portfolio consisting of a long position in β = 5 shares of a stock with
an initial price S0 = 100. The intra-day log-return of the asset
∆1Yt+1 = ln(St+1/St), t = 0, 1, . . . are assumed to be i.i.d. and normally
distributed with mean 0 and standard deviation σ = 0.1.

(i) We denote by L1 the portfolio loss between today and tomorrow. We have:

L1 = −P&L1 = −β(S1 − S0) = −βS0(e
∆1Y1 − 1) = −500(e∆1Y1 − 1).

Then, using the properties on the VaR and the fact that ∆1Y1
law
= −∆1Y1:

VaRα(L1) = −500VaR1−α(e
∆1Y1 − 1)

= −500(eVaR1−α(∆1Y1) − 1)

= 500(1− e−VaRα(∆1Y1))

= 500
(
1− e−0.1Φ−1(α)

)
.

For α = 0.99, Φ−1(α) ≈ 2.3, giving VaR0.99(L1) ≈ 100.
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Value-at-Risk (VaR)

(ii) We keep the long position on the portfolio for 100 days. The portfolio loss
over this period is:

L100 = −β(S100 − S0) = −500(e∆100Y100 − 1),

where

∆100Y100 = ln(S100/S0) =

99∑
t=0

∆1Yt+1 ∼ N(0, 1).

The VaR over this period is:

VaRα(L100) = 500
(
1− e−Φ−1(α)

)
,

hence for α = 0.99, VaR0.99(L100) ≈ 450.
A linear approximation of the loss gives:

L100 = −500(e∆100Y100 − 1) ≈ L̃100 = −500∆100Y100,

leading to:
VaRα(L̃100) = 500Φ−1(α),

which for α = 0.99 gives VaR0.99(L̃100) ≈ 1150, a poor approximation of
VaR0.99(L100).
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Expected Shortfall (ES)

Although VaR is popular among practitioners, it has several limitations. In
particular, it does not consider the magnitude of losses beyond the VaR level.

Definition (Definition of Expected Shortfall)
Let L be a loss variable with cumulative distribution function FL such that
E[|L|] <∞. The expected shortfall at confidence level α ∈ (0, 1) is defined as:

ESα(L) =
1

1− α

∫ 1

α

VaRu(L)du =
1

1− α

∫ 1

α

qu(FL)du,

where qu(FL) is the quantile function of FL.

Instead of fixing a confidence level α, ES looks at the average of losses exceeding
VaR at level α, i.e., in the tail of the loss distribution. ES is sometimes called
Conditional VaR (CVaR), Average VaR (AVaR) or Tail VaR (TVaR).
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Expected Shortfall (ES)

For continuous loss distributions, we have an equivalent definition of expected
shortfall:

Proposition: If L ∈ L1(P) has a continuous cdf, then

ESα(L) = E[L|L ≥ VaRα(L)] =
1

1− α
E[L1L≥qα(FL)].

Interpretation: This means that ES is the average of losses exceeding VaR.
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Expected Shortfall (ES)

Proof. Recall that if U ∼ U([0; 1]) then F−1
L (U) has the same distribution as L.

We deduce that :

E[L1L≥qα(FL)] = E[F−1
L (U)1F−1

L (U)≥F−1
L (α)]

= E[F−1
L (U)1U≥α] =

∫ 1

α

F−1
L (a) da =

∫ 1

α

VaRa(L) da.

where in the second equality we used the fact that F−1
L is strictly increasing (since

FL is continuous). We conclude by noting that when FL is continuous,
P(L ≥ VaRα(L)) = 1− α.

Remark: In the general case when FL may be discontinuous, we have :

ESα(L) =
1

1− α

(
E[L1L≥qα(FL)] + VaRα(L)(1− α− P(L ≥ VaRa(L))

)
.
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Comparison between VaR and ES

Comparison between VaR and ES

Consider a continuous loss distribution, where:

P(L ≥ VaRα(L)) = 1− α.

◦ For example, when α = 95%, VaRα(L) = 10, 000 euros means there is a 5%
probability of losing more than 10,000 euros.

◦ For ES, we have:
ESα(L) = E[L|L ≥ VaRα(L)],

so, for instance, ES0.95(L) = 13, 000 euros means that, on average, the ”bad”
losses exceeding 10,000 euros are 13,000 euros.
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Comparison between VaR and ES

Basic Inequalities

Recall that VaRα is nondecreasing with α so that

ESα(L) ≥ VaRα(L),

i.e., ES is more conservative than VaR.

When L follows a Gaussian distribution, we have remarkably:

VaR99%(L) ≈ ES97.5%(L).
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Comparison between VaR and ES

Calculations of Gaussian VaR and ES

Recall that for L ∼ N(0, 1):

VaRα(L) = Φ−1(α), ESα(L) =
ϕ(Φ−1(α))

1− α
.

α 99.9% 99% 95%
VaRα 3.090 2.326 1.645
ESα 3.367 2.665 2.063
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Comparison between VaR and ES

Other Examples of Distribution

The following two examples are left as an exercise.
Laplace distribution (double exponential), i.e. density f(ℓ) = λ

2 e
−λ|ℓ|, λ > 0:

VaRα(L) = − 1

λ
ln(2(1− α)), ESα =

1

λ
[1− ln(2(1− α))] , α >

1

2
.

Pareto distribution with index p, i.e. density f(ℓ) = pℓ−p−11ℓ≥1, p > 1:

VaRα(L) = (1− α)−1/p, ESα =
p

p− 1
(1− α)−1/p.
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Comparison Between VaR and ES

VaR
Introduced in the early 90’s by JP Morgan (RiskMetrics).
Standard in the financial sector.
Basel III based on VaR.

ES
Used more and more often by fund managers and in insurance.
Discussion for replacing VaR(99%) by ES(97.5%) in Basel regulation.

Others
Similar estimation method
ES is coherent but not VaR
VaR is defined for any distribution law while ES requires integrable tail
distribution (e.g. ∞ for the Cauchy distribution).
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Aggregation of Risks and Coherent Risk Measures

Define concepts and reasonable properties to take into account the aggregation
and diversification of risks, leading to the class of coherent risk measures.

(Ω,F) is a probability space, and L is the set of random variables on (Ω,F).
An element L ∈ C represents a portfolio loss over a horizon h. We assume
that C is convex.

A risk measure is a function ρ : C → R, which is law-invariant. ρ(L) is
interpreted as the amount of equity that must be added to the initial position
for it to become acceptable to a regulator.

A position L such that ρ(L) ≤ 0 is acceptable without additional capital; if
ρ(L) < 0, capital can even be withdrawn from the position.
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Aggregation of Risks and Coherent Risk Measures

(IT) Invariance by Translation

For all L ∈ C, we have:

ρ(L+ ℓ) = ρ(L) + ℓ, ∀ℓ ∈ R.

Interpretation: Axiom (IT) formulates the requirement for capital: if ρ(L) > 0,
adding the capital ρ(L) to the initial position leads to an adjusted loss
L̄ = L− ρ(L) with ρ(L̄) = 0, so that the position becomes acceptable. A
measure ρ satisfying (IT) is called a monetary risk measure.

Remark: We have already seen that VaR and ES satisfy the axiom (IT).
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Aggregation of Risks and Coherent Risk Measures

(M) Monotonicity

For all L1, L2 ∈ C, if L1 ≤ L2 a.s., then:

ρ(L1) ≤ ρ(L2).

Interpretation: A position with a higher loss in all states of the world requires
more capital.

Remark: If L1 ≤ L2 then FL2
(l) = P (L2 ≤ l) ≤ P(L1 ≤ l) = FL1

(l). (stochastic
dominance of first order), from which we deduce that: VaRα(L1) ≤ VaRα(L2),
i.e. VaR satisfies (M). By integration, we also deduce that ES satisfies (M).
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Aggregation of Risks and Coherent Risk Measures

(Sub) Sub-additivity

For all L1, L2 ∈ C, we have:

ρ(L1 + L2) ≤ ρ(L1) + ρ(L2).

Interpretation and advantages:
The sub-additivity property encourages financial institutions to aggregate
their positions to reduce risk, i.e., the capital required by the regulator.
If L = L1 + · · ·+ Ln, where Li represents the position of the internal unit i,
then:

ρ(L) ≤ ρ(L1) + · · ·+ ρ(Ln).

The estimation of partial risk ρ(Li) is generally more precise, and thus,∑n
i=1 ρ(Li) gives a reliable estimate for the aggregated risk ρ(L).

However:
The axiom of sub-additivity is sometimes subject to controversy, particularly
because it excludes, in general, the VaR (Value-at-Risk) measure, as we shall
see later.
Sub-additivity is satisfied by the Expected Shortfall (ES) risk measure.
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Aggregation of Risks and Coherent Risk Measures

(PH) Positive Homogeneity

For all L ∈ C, we have:
ρ(aL) = aρ(L), ∀a ≥ 0.

Interpretation and remarks:
The axiom (PH) means that when one changes the currency (or numéraire),
the risk is modified accordingly.
Both Value-at-Risk (VaR) and Expected Shortfall (ES) satisfy (PH).
A risk measure satisfying both (Sub) and (PH) is convex (Conv):

ρ(λL1 + (1− λ)L2) ≤ λρ(L1) + (1− λ)ρ(L2), ∀L1, L2 ∈ L, λ ∈ [0, 1].

However, (PH) is sometimes criticized, especially in illiquid markets where
the risk of n shares of a position L, for large n, might be strictly larger than
n times the risk of L. This is not satisfied with (PH).
This criticism has led to the replacement of (Sub) and (PH) by the weaker
property of convexity (Conv).
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Aggregation of Risks and Coherent Risk Measures

Coherent Risk Measure

A risk measure ρ : C → R is said to be coherent if it satisfies the following four
axioms:

1 (IT)
2 (M)
3 (Sub)
4 (PH)

◦ Consequences:
(PH) + (IT) imply that ρ(0) = 0, and more generally ρ(c) = c for any
constant c. If the loss c occurs with certainty, an accounting provision of c is
required.

(M) implies that if L ≥ 0, then ρ(L) ≥ 0. If the loss is certain, the funds
must be deposited.
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Aggregation of Risks and Coherent Risk Measures

VaR is not sub-additive (hence not coherent)

Example: Consider a portfolio of d = 100 bonds which may default with initial
value 100 and nominal 105 at maturity in 1 year.

The defaults are independent and occur with probability p = 2% for each
bond.

The loss of bond i is:

Li = 100− 105(1− Yi) = 105Yi − 5

where Yi is the default indicator: Yi = 1 if default occurs, otherwise 0. Hence
Yi ∼ B(p) and

Li =

{
100, with probability p = 2%
−5, with probabiity 1− p = 98%.
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Aggregation of Risks and Coherent Risk Measures

VaR is not sub-additive (hence not coherent)
Consider two portfolios, each with initial value 10,000 euros:

Portfolio A: 100 shares in one bond: LA = 100L1 = 10500Y1 − 500

Portfolio B: one share in each bond:
LB =

∑100
i=1 Li = 105

∑100
i=1 Yi − 500 = 105S − 500, S ∼ B(100, 2%).

Note that P(L1 ≤ −5) = 0, 98 and for l < −5, P(L1 ≤ l) = 0 < 0, 95, hence
VaRα(L1) = −5 and

VaR0.95(LA) = 100VaR0.95(L1) = −500

and, since P(S ≤ 5) ≈ 0, 984 ≥ 0, 95, P(S ≤ 4) ≈ 0, 949 < 0, 95, one has
VaR0.95(S) = 5 and

VaR0.95(LB) = 105VaR0.95(S)− 500 = 525− 500 = 25.

Conclusion: Measuring risk with VaR can lead to nonsensical results!

VaR0.95(
100∑
i=1

Li) = 25 > −500 = VaR0.95(100L1) =
100∑
i=1

VaR0.95(Li).
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Aggregation of Risks and Coherent Risk Measures

Remarks

In the previous example, the non-sub-additivity of VaR arises due to the fact
that the i.i.d. loss variables Li have a strongly asymmetric distribution (high
skewness), typical of bond portfolios with defaults.

There are other counter-examples of sub-additivity of VaR for distributions
law with zero skewness but with fat distribution tails, like the Cauchy
distribution (density f(x) = 1

π(1+x2) ) or the Pareto distribution (density
f(x) = p/xp+11x≥1, p > 0).

On the other hand, VaR is sub-additive for Gaussian variables and, more
generally, for random variables with elliptical distributions.
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Aggregation of Risks and Coherent Risk Measures

VaR for Gaussian variables

Let us consider a model with N sources of risk where the loss Li over a period is
given by:

Li = ai + biZ + εi, i = 1, . . . , N,

where Z ∼ N (0, 1), and (εi)
N
i=1 are i.i.d. white noises with law N (0, σ2

i ),
independent of Z. The parameters are ai, bi. The variable Z is interpreted as a
common risk factor, and the εi are idiosyncratic risks.

The global loss is:

L =

N∑
i=1

Li = a+ bZ + ε,

with a =
∑N

i=1 ai, b =
∑N

i=1 bi, and

ε =

N∑
i=1

εi ∼ N (0, σ2), σ2 =

N∑
i=1

σ2
i .
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Aggregation of Risks and Coherent Risk Measures

Contagion effect

The loss Li follows a Gaussian distribution N (ai, b
2
i + σ2

i ), while the global loss
L ∼ N (a, b2 + σ2). From the affine transformation property of VaR, we have:

VaRα(Li) = ai +
√
b2i + σ2

iΦ
−1(α), i = 1, . . . , N,

VaRα(L) = a+
√
b2 + σ2Φ−1(α).

The coefficient b =
∑N

i=1 bi depends on the correlations between the losses Li and
Z. The larger |b| is, the larger VaRα(L) becomes. b2 is a measure of contagion.

In particular, if b = 0, we say that the risk field is protected against the common
risk factor.
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Aggregation of Risks and Coherent Risk Measures

Diversification
It holds

VaRα(L)−
N∑
i=1

VaRα(Li) =

[√
b2 + σ2 −

N∑
i=1

√
b2i + σ2

i

]
Φ−1(α).

By writing:(
N∑
i=1

√
b2i + σ2

i

)2

=
N∑
i=1

(b2i + σ2
i ) +

∑
i ̸=j

√
(b2i + σ2

i )(b
2
j + σ2

j ),

we have:

√
b2 + σ2 −

N∑
i=1

√
b2i + σ2

i =
b2 + σ2 −

∑N
i=1(b

2
i + σ2

i )−
∑

i ̸=j

√
(b2i + σ2

i )(b
2
j + σ2

j )
√
b2 + σ2 +

∑N
i=1

√
b2i + σ2

i

=

∑
i ̸=j(bibj −

√
b2i + σ2

i

√
b2j + σ2

j )
√
b2 + σ2 +

∑N
i=1

√
b2i + σ2

i

≤ 0.

Thus, diversification reduces the risk.
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Aggregation of Risks and Coherent Risk Measures

ES is coherent

Proposition: ES is a coherent risk measure.

Proof: We already know that ES satisfies the properties of (IT), (M), and (PH).
Let us show that ES is also sub-additive.

For random variables L1 and L2 with continuous distributions, and denoting
L3 = L1 + L2, we have:

(1− α) [ESα(L1) + ESα(L2)− ESα(L3)] = E
[
L1

(
IL1≥VaRα(L1) − IL3≥VaRα(L3)

)]
+E

[
L2

(
IL2≥VaRα(L2) − IL3≥VaRα(L3)

)]
.
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Aggregation of Risks and Coherent Risk Measures

ES is coherent (continued)

Now, for i = 1, 2, the terms:

(Li − VaRα(Li))
(
ILi≥VaRα(Li) − IL3≥VaRα(L3)

)
≥ 0,

since the two factors in parentheses have the same sign. We deduce that:

(1− α) [ESα(L1) + ESα(L2)− ESα(L3)]

≥ VaRα(L1)E
[
IL1≥VaRα(L1) − IL3≥VaRα(L3)

]
+ VaRα(L2)E

[
IL2≥VaRα(L2) − IL3≥VaRα(L3)

]
= 0,

since E[ILi≥VaRα(Li)] = P[Li ≥ VaRα(Li)] = 1− α, for i = 1, 2, 3. Therefore, ES
is sub-additive.
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The special case of Elliptical distributions

Spherical distributions

Definition. An Rd-valued random vector X has a spherical distribution if there
exists a function ψX : R+ → R such that the characteristic function of X satisfies:

φX(u) := E
[
exp(iu⊤X)

]
= ψX(‖u‖2), u ∈ Rd.

We then denote X ∼ Sd(ψX).

Lemma: Let X : Ω → Rd be a random variable and φX : Rd → R, u 7→ E(ei⟨u,X⟩)
its characteristic function. The following assertions are equivalent:
(i) For each orthogonal linear map O : Rd → Rd, one has OX ∼ X.
(ii) There is a function ψX : R+ → R with φX(u) = ψX(‖u‖2), i.e.

X ∼ Sd(ψX).
(iii) For each a ∈ Rd, we have 〈a,X〉 ∼ ‖a‖X1, where X1 is the first component

of the vector X.

Noufel Frikha (noufel.frikha@univ-paris1.fr) Université Paris 1 Panthéon-Sorbonne October 2024 40 / 71



The special case of Elliptical distributions

Proof
(i) ⇒ (ii): For each orthogonal linear map O and each u ∈ Rd, we have

φX(u) = φOX(u) = E
(
ei⟨u,OX⟩

)
= E

(
ei⟨O

Tu,X⟩
)
= φX(OTu).

The characteristic function φX(·) is therefore invariant under orthogonal
transformations, and the property (ii) follows.
(ii) ⇒ (iii): Assume a ∈ Rd. Then we get for each t ∈ R,

φ⟨a,X⟩(t) = E
(
eit⟨a,X⟩

)
= E

(
ei⟨ta,X⟩

)
= φX(ta) = ψX(t2‖a‖2).

On the other hand, we have

φ∥a∥X1
(t) = E

(
eit∥a∥X1

)
= E

(
ei⟨t∥a∥e1,X⟩

)
= φX(t‖a‖e1) = ψX(t2‖a‖2),

and the property (iii) follows.
(iii) ⇒ (i): We have

φOX(u) = E
(
ei⟨u,OX⟩

)
= E

(
ei⟨O

Tu,X⟩
)
= φ⟨OTu,X⟩(1) = φ∥OTu∥X1

(1)

= φ∥u∥X1
(1) = φX(u)

which shows that φX(u) is invariant under orthogonal transformations,
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The special case of Elliptical distributions

Examples

◦ Normal distribution: If X ∼ Nd(0, Id) then

φX(u) = exp(−1

2
‖u‖2) = ψX(‖u‖2), ψ(t) = exp(−1

2
t).

◦ Normal mixture:
The Rd-valued random vector X is said to have a multivariate normal variance mixture
distribution if:

X ≡ µ+
√
WAZ ∼Md(µ,Σ, F̂W )

where:
Z ∼ Nk(0, Ik)

W ≥ 0 is a nonnegative random variable, independent of Z,
F̂W (θ) := E[exp(−θW )] (Laplace-Stieljes transform).
A ∈ Rd×k and µ ∈ Rd are constants

φX(u) = E[E[eiu
TX |W ]] = exp(iuTµ)F̂W (

1

2
uTΣu).

∼ If µ = 0 and Σ = AAT = Id then X ∼ Sd(ψX) with ψX = F̂W ( 1
2
t).
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The special case of Elliptical distributions

Elliptical Distributions
Definition:
An Rd-valued random vector X has an Elliptical distribution if:

X ≡ µ+AY,

where Y ∼ Sk(ψ) (a spherical distribution), A ∈ Rd×k, and µ ∈ Rd are
constants.
Characteristic function:
The characteristic function of an elliptical distribution is given by:

φX(u) = E[eiu
TX ] = eiu

Tµψ(uTΣu),

where Σ = AA⊤. We then denote X ∼ Ed(µ,Σ, ψ)

Examples:
Multivariate normal distribution: X ∼ Nd(µ,Σ) has an elliptical distribution.
Normal mixture: X ∼Md(µ,Σ, F̂W ) then X ∼ Ed(µ,Σ, ψ) with
ψ(t) = F̂W (t/2).
Multivariate t-distribution: An elliptical distribution with heavier tails
compared to the normal distribution.
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The special case of Elliptical distributions

Sub-additivity of VaR for Elliptical Distributions
Proposition: Let X ∼ Ed(µ,Σ, ψ). Then, for any u,w ∈ Rd, and α ∈ [0, 1]:

VaRα(u
⊤X + w⊤X) ≤ VaRα(u

⊤X) + VaRα(w
⊤X).

Proof: We have X ≡ µ+AY with AA⊤ = Σ and Y ∼ Sd(ψ). From the proposition on
spherical distribution, for any u ∈ Rd:

u⊤X
d
= u⊤µ+ ‖A⊤u‖Y1.

This implies that for any u,w ∈ Rd and α ∈ [0, 1]:

VaRα(u
⊤X + w⊤X) = (u+ w)⊤µ+ ‖A⊤(u+ w)‖VaRα(Y1).

The triangle inequality gives

‖A⊤(u+ w)‖ ≤ ‖A⊤u‖+ ‖A⊤w‖.

Therefore, we have:

VaRα(u
⊤X + w⊤X) ≤ u⊤µ+ w⊤µ+ (‖A⊤u‖+ ‖A⊤w‖)VaRα(Y1)

= VaRα(u
⊤X) + VaRα(w

⊤X).
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Other examples of risk measures

Other examples of coherent risk measures
Expected Shortfall (ES) is a coherent risk measure, defined as:

ESα(L) =
1

1− α

∫ 1

α

VaRu(L)du

◦ Construction of new coherent risk measures on the basis of existing coherent
risk measures.
◦ Spectral risk measures
The ES can be directly generalized to take into account individual risk aversion.
Instead of averaging over all VaRz(X) for z ≥ α with a uniform weight, one can
employ a more general weighting function ϕ.

Definition
Let (A,A, µ) be a probability space with σ-Algebra A and probability measure µ.
Then an integrable map ϕ : A→ R is called a weight function, if ϕ has the
following properties:
(i) ϕ(α) ≥ 0 for almost every α ∈ A,
(ii)

∫
A
ϕ(α) dµ(α) = 1.
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Other examples of risk measures

Definition (Spectral Risk Measure)
Let ϕ ∈ L1([0, 1]) be a weight function. The risk measure

Mϕ(X) =

∫ 1

0

VaRp(X)ϕ(p) dp

is called the spectral measure of ϕ.

◦ The concept of a spectral measure allows the representation of an individual
profile of risk aversion.
◦ The VaR is a limit case of spectral measures

VaRα(X) =

∫ 1

0

VaRp(X)δα(p) dp,

where δα denotes the Dirac distribution.
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Other examples of risk measures

Theorem
Let (A,A, µ) be a probability space with σ-Algebra A and probability measure µ.
Let {ρα}α∈A be a family of risk measures and M a vector space of real-valued
random variables X, such that ρα(X) are µ-almost everywhere defined and
µ-integrable. If all ρα are translation invariant, positively homogeneous,
monotone, and subadditive, then the risk measure

ρ :M → R, X 7→ ρ(X) =

∫
A

ρα(X)dµ(α)

also has the corresponding property.
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Other examples of risk measures

Proof.
Let c ∈ R and X,Y be arbitrary random variables.

Translation invariance: since µ is a probability measure,
ρ(X + c) =

∫
A
ρα(X + c)dµ(α) =

∫
A
(ρα(X) + c) dµ(α) = ρ(X) + c,

Positive homogeneity: For c ≥ 0,

ρ(cX) =

∫
A

ρα(cX)dµ(α) =

∫
A

cρα(X)dµ(α) = cρ(X).

Monotony: If X ≥ Y almost everywhere, then ρα(X) ≥ ρα(Y ), so

ρ(X) =

∫
A

ρα(X)dµ(α) ≥
∫
A

ρα(Y )dµ(α) = ρ(Y ).

Subadditivity:

ρ(X+Y ) =

∫
A

ρα(X+Y )dµ(α) ≤
∫
A

(ρα(X) + ρα(Y )) dµ(α) = ρ(X)+ρ(Y ).

Thus, the risk measure ρ inherits all the properties of the ρα.
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Other examples of risk measures

Coherence of spectral risk measures

Theorem (Coherence of spectral risk measures)
A spectral measure Mϕ is coherent, if the weight function ϕ is (almost
everywhere) monotone increasing.

Examples of Spectral Risk Measures

For ϕ(u) = 1
1−α1[0,1−α](u), we recover Expected Shortfall (ES).

Other choices of ϕ(u) lead to different spectral risk measures that emphasize
extreme losses.
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Other examples of risk measures

Proof.
Since ϕ is monotone increasing, we can define a measure on ([0, 1],B) by
ϕ(p) := ν([0, p]). By Fubini’s theorem, it follows that:

Mϕ(X) =

∫ 1

0

VaRp(X)ϕ(p)dp =

∫ 1

0

VaRp(X)

(∫ p

0

dν(α)

)
dp

=

∫ 1

0

(∫ 1

0

1[0,p](α)VaRp(X)dν(α)

)
dp =

∫ 1

0

(∫ 1

0

1[α,1](p)VaRp(X)dp

)
dν(α)

=

∫ 1

0

(∫ 1

α

VaRp(X)dp

)
dν(α) =

∫ 1

0

(1− α)ESα(X)dν(α)

where we used the identity 1[0,p](α) = 1[α,1](p) for α, p ∈ [0, 1]. The assertion now
follows from the previous theorem with dµ(α) = (1− α)dν(α), since:∫ 1

0

dµ(α) =

∫ 1

0

(1− α)dν(α) =

∫ 1

0

(∫ 1

α

dp

)
dν(α)

=

∫ 1

0

(∫ 1

0

1[α,1](p)dp

)
dν(α) =

∫ 1

0

(∫ 1

0

1[0,p](α)dν(α)

)
dp =

∫ 1

0

φ(p)dp = 1.
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Other examples of risk measures

Distortion Risk Measures

Denote by Ψ the cumulative distribution function (CDF) on [0, 1] with
density ϕ, so that

Mϕ(L) = RΨ(L) =

∫ 1

0

F−1
L (1− u)dΨ(u)

More generally, when Ψ is a CDF on [0, 1], called a distortion function, RΨ is
called a distortion risk measure.

In the particular case where Ψ is the distribution function of the Dirac law in
1− α, i.e., Ψ(x) = 1x≥1−α, we have:

RΨ(L) = VaRα(L)
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Other examples of risk measures

Wang Risk Measure
Assume for simplification that FL is invertible, i.e., FL is continuous and
strictly increasing.

By integration by parts and a change of variable (u 7→ 1− u), we have:

RΨ(L) =

∫ 1−FL(0)

0

F−1
L (1− u)dΨ(u) +

∫ 1

1−FL(0)

F−1
L (1− u)d[Ψ(u)− 1]

= −
∫ 1−FL(0)

0

Ψ(u)dF−1
L (1− u)−

∫ 1

1−FL(0)

[Ψ(u)− 1]dF−1
L (1− u)

=

∫ 1

FL(0)

Ψ(1− u)dF−1
L (u) +

∫ FL(0)

0

[Ψ(1− u)− 1]dF−1
L (u)

Further, with a change of variable u = FL(l), we get the formula of Wang
risk measure:

RΨ(L) =

∫ +∞

0

Ψ(F c
L(l))dl −

∫ 0

−∞
[1−Ψ(F c

L(l))]dl

Here, F c
L(l) = 1− FL(l) represents the survival function.
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Other examples of risk measures

◦ The interpretation is the following: the initial survival function F c
L is replaced by

a survival function Ψ(F c
L) and the integral in RΨ is called the Choquet integral or

distorted expectation.

◦ When Ψ(u) = u, we recover the usual integral and expectation:

RΨ(L) =

∫ +∞

0

E[1L>ℓ]dℓ−
∫ 0

−∞
E[1L≤ℓ]dℓ

= E
[∫ +∞

0

1L>ℓdℓ−
∫ 0

−∞
1L≤ℓdℓ

]
= E[L].

◦ When Ψ is concave, the Choquet integral gives more weight to the large values
of L (extreme risks), and one shows that RΨ is sub-additive, which is consistent
with the decreasing monotonicity of ψ = Ψ′ when Ψ admits a density.
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Other examples of risk measures

Examples

Distortion risk measure with proportional hazard rate: This corresponds to a
distortion function:

Ψ(u) = up, u ∈ [0, 1], and p > 0.

When p < 1, Ψ is concave : the extreme losses are over-weighted. The
associated risk measure RΨ is sub-additive.
Exponential distortion risk measure: this corresponds to a distortion function:

Ψ(u) =
1− e−pu

1− e−p
, u ∈ [0, 1], and p > 0,

which is concave.
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Other examples of risk measures

Coherence and Independence

We could think that the risk of two independent risks aggregates together,
i.e., ρ(L1 + L2) = ρ(L1) + ρ(L2) for independent L1 and L2.

It is wrong in general!

Let L1, L2 be i.i.d. centered Gaussian. Then L1 + L2 ∼
√
2L1, and thus for

a risk measure satisfying (PH) (e.g., VaR and ES):

ρ(L1 + L2) = ρ(
√
2L1) =

√
2ρ(L1) < 2ρ(L1) = ρ(L1) + ρ(L2)

whenever ρ(L1) > 0.
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Computing the VaR and ES in practice

◦ We here focus on non-parametric approaches which rely on an i.i.d. sample
X1, · · · , Xn of size n with the same law as X with cdf F .

◦ A natural idea to estimate VaRα(X) = F−1(α) is use the order statistics

X(1) = min
1≤k≤n

Xk ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n) = max
1≤k≤n

Xk

defined by sorting the realizations of X1, · · · , Xn in increasing order.

◦ We then estimate VaRα(X) by X(⌈nα⌉) where dxe is the unique integer s.t.
dxe − 1 < x ≤ dxe.

◦ Remark: One can estimate VaRα(X) by{
X((n+1)α) if (n+ 1)α is an integer.
1
2 (X(⌊(n+1)α⌋) +X(⌊(n+1)α⌋)+1) otherwise.

◦ Example: n = 100 and α = 95% then we estimate the 95% quantile by X(95).
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Computing the VaR and ES in practice

Examples

◦ Empirical cdf with 10 and 100 samples.
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Computing the VaR and ES in practice

Computing X(⌈nα⌉) is nothing but the α-quantile of the empirical cdf of the data

Fn(x) =
1

n

n∑
k=1

1Xk≤x =


0, if x ≤ X(1),

i/n, if X(i) ≤ x < X(i+1),

1, if x ≥ X(n).

Fix α ∈ (0, 1) and select i s.t. i−1
n < α ≤ i

n so that i− 1 < nα ≤ i⇔ dnαe = i.

Recalling that
F−1
n (α) = inf {x : Fn(x) ≥ α}

we get
F−1
n (α) = X(i) = X(⌈nα⌉).

◦ As a direct application of the LLN and CLT, for any x ∈ R

Fn(x)
a.s.→ F (x) and

√
n(Fn(x)− F (x))

d⇒ N (0, F (x)(1− F (x)), as n ↑ ∞.

◦ According to the Glivenko-Cantelli theorem, if F is continuous, then

‖Fn − F‖∞ := sup
x∈R

|(Fn − F )(x)| a.s.→ 0, as n ↑ ∞.
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Computing the VaR and ES in practice

Theorem
Assume that F is continuous and increasing. Then, for any α ∈ (0, 1),

F−1
n (α)

a.s.−→ F−1(α), as n ↑ ∞.

Proof.
Since F is invertible and F−1 is continuous, it suffices to prove that

F (F−1
n (α))

a.s.−→ F (F−1(α)) = α, as n ↑ ∞.

Then, we write

|F (F−1
n (α))− F (F−1(α))| ≤ |F (F−1

n (α))− Fn(F
−1
n (α))|

+ |Fn(F
−1
n (α))− F (F−1(α))|

≤ ‖Fn − F‖∞ +
∣∣∣dnαe
n

− α
∣∣∣

→ 0, as n ↑ ∞,

using the Glivenko-Cantelli theorem for the first term.
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Computing the VaR and ES in practice

Computation of the ES

◦ Regarding the ES, a simple idea consists in writing

ESα(X) =
1

1− α
E[X1X≥VaRα(L)] ≈

1

1− α

1

n

n∑
i=1

Xi1Xi≥X(⌈nα⌉) = ÊSα(X).

Notice that
ÊSα(X) =

1

1− α

1

n

n∑
i=⌈nα⌉

X(i)

which is computed using the same sample X1, · · · , Xn as the one used to
compute F−1

n (α).
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Computing the VaR and ES in practice

Theorem
Assume that X ∈ L1(P) and that its cdf is continuous and increasing. Then, it
holds

ÊSα(X)
a.s.−→ ESα(X) as n→ ∞.

Proof.
Step 1: prove the decomposition

ÊSα(X) = VaRα(X) +
1

1− α

1

n

n∑
i=1

(Xi − VaRα(X))+

+X(⌈nα⌉) − VaRα(X) +
1

1− α

1

n

n∑
i=1

(Xi −X(⌈nα⌉))+ − (Xi − VaRα(X))+

+
1

1− α
X(⌈nα⌉)(α− dαne

n
)

Step 2: prove that as n ↑ ∞
An

a.s.−→ ESα(X) (LLN)
Bn

a.s.−→ 0 (Lipschitz reg x+ + X(⌈nα⌉)
a.s.−→ VaRα(X))

Cn
a.s.−→ 0.
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Computing the VaR and ES in practice

Stochastic approximation point of view for the VaR-ES
◦ We here present another point of view to compute the couple (VaR, ES). We
first remark that if the cdf of X is continuous and increasing then the VaR is the
unique solution to

P(X ≤ ξ) = α⇔ E[H1(ξ,X)] = 0, with H1(ξ,X) := 1X≤ξ − α

A natural idea to compute the (unique) zero of h1(ξ) = E[H1(ξ,X)] is to use the
(online) Robbins-Monro algorithm with dynamics

ξk+1 = ξk − γk+1H1(ξk, Xk+1) = ξk − γk+1(h1(ξk) + εk+1),

where (Xk)k≥1 is an i.i.d. sequence with the same law as X and ξ0 is a
real-valued random variable independent of (Xk)k≥1.
Here, (γk)k≥1 is a deterministic decreasing and positive sequence satisfying∑

n≥1

γn = ∞ and
∑
n≥1

γ2n <∞.

◦ Example: γn = γn−β , with β ∈ (1/2, 1] and γ > 0.
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What about the ES?

◦ A natural idea is to proceed as before

ESα(X) =
1

1− α
E[X1X≥VaRα(L)] ≈

1

1− α

1

n

n∑
k=1

Xk1Xk≥ξk−1
= Cn, n ≥ 1

Notice that the sequence (Cn)n≥0 (with C0 = 0) defined above can be written in
the recursive form

Ck+1 = Ck − 1

k + 1
H2(ξk, Ck, Xk+1), with H2(ξ, C, x) := C − x1x≥ξ

The resulting (online) stochastic algorithm reads as{
ξk+1 = ξk − γk+1H1(ξk, Xk+1)

Ck+1 = Ck − 1
k+1H2(ξk, Ck, Xk+1)
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A general convergence result
The convergence of the Robbins-Monro algorithm and the stochastic gradient descent
algorithm can be framed as the following general result.

Theorem
Define h(z) = E[H(z,X)], H : Rq × Rd → Rd. Let T ⋆ = {h = 0}. Assume that the
following mean-reverting assumption is satisfied:

∀z ∈ Rd\T ⋆, ∀z⋆ ∈ T ⋆, 〈z − z⋆, h(z)〉 > 0,

and
E[|H(z,X)|2] ≤ C(1 + |z|2).

Then, the sequence (zn)n≥0 defined by

zn+1 = zn − γn+1H(zn, Xn+1), n ≥ 0

where (Xn)n≥1 is an i.i.d. sequence of r.v. having the same distribution as X and z0 is
a r.v. independent of (Xn)n≥1 satisfying E[|z0|2] <∞, satisfies

zn
a.s.−→ z∞, as n ↑ ∞,

where z∞ is a r.v. taking values in T ⋆.
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◦ We apply the above general theorem to h1(ξ) = E[H1(ξ,X)] = P(X ≤ ξ)− α.
〈h1(ξ), ξ − ξ⋆〉 = (P(X ≤ ξ)− α)(ξ − ξ⋆) > 0, for all ξ 6= ξ⋆.
|H1(ξ,X)|2 ≤ 2(1+α2) ≤ 2(1+α2)(1+ |ξ|2) ⇒ E[|H1(ξ,X)|2] ≤ C(1+ |ξ|2)
with C := 2(1 + α2).

⇝ the sequence (ξn)n≥0 converges a.s. to ξ⋆ = VaRα(X).

◦ To prove the a.s. convergence of (Cn)n≥0, we use the following decomposition:

Cn =
1

1− α

1

n

n∑
k=1

Xk1Xk≥ξk−1

=
1

1− α

1

n

n∑
k=1

E[X1X≥ξ]|ξ=ξk−1
+

1

1− α

1

n

n∑
k=1

(Xk1Xk≥ξk−1
− E[X1X≥ξ]|ξ=ξk−1

)

=: An + Bn.

Ought to Cesarò’s lemma and the continuity of ξ 7→ E[X1X≥ξ], one gets
An

a.s.→ 1
1−α

E[X1X≥ξ⋆ ] = ESα(X), as n ↑ ∞.

It thus remains to prove that Bn
a.s.−→ 0 as n ↑ ∞.
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◦ Note that Bn := 1
n

∑n
k=1 εk, with εk = 1

1−α (Xk1Xk≥ξk−1
−E[X1X≥ξ]|ξ=ξk−1

).

◦ We introduce the filtration F = (Fn)n≥1, Fn = σ(ξ0, X1, · · · , Xn) and the
process

Nn =

n∑
k=1

1

k
εk, n ≥ 1.

◦ Note that since Xk ⊥⊥ Fk−1, one has

E[εk|Fk−1] =
1

1− α
(E[X1X≥ξ]ξ=ξk−1

− E[X1X≥ξ]ξ=ξk−1
) = 0

so that (Nn)n≥1 is an F-martingale.
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◦ Assuming that X ∈ L2(P), for some compact set K containing (ξn)n≥1, one has

E[ε2k|Fk−1] =
var(X1X≥ξk−1

|Fk−1)

(1− α)2
≤

E[X21X≥ξ]|ξ=ξk−1

(1− α)2
≤

supξ∈K E[X21X≥ξ]

(1− α)2

Hence,
〈N〉∞ = lim

n
〈N〉n =

∑
k≥1

1

k2
E[ε2k|Fk−1] <∞ a.s.

which in turn yields the a.s. convergence of (Nn)n≥1. Using Kronecker’s lemma,
we conclude

Bn =
1

n

n∑
k=1

εk
a.s.−→ 0, as n ↑ ∞.

Conclusion: The (online) stochastic algorithm{
ξn+1 = ξn − γn+1H1(ξn, Xn+1)

Cn+1 = Cn − 1
n+1H2(ξn, Cn, Xn+1)

satisfies
(ξn, Cn)

a.s.−→ (VaRα(X),ESα(X)), as n ↑ ∞.
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◦ Take X ∼ N (0, 1) and set γn = 1/nβ , β = 0.8, ξ0 = 0.5, C0 = 1, α = 95%
and M = 10000 iterations. (VaRα(X),ESα(X)) = (1.645, 2.064).
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