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Basic notions

Let f be a function from a set A to R, A can be a subset of R or
of Rn, or N.

Let C be a subset of A. The set C is the set of feasible points
(or admissible points), it is often described by a finite list of
constraints.

An optimization problem consists in finding the maximum
(respectively, the minimum) of f on the set C. It is denoted by :

(P) max
x∈C

f (x) resp. (Q) min
x∈C

f (x)

In these cases, f is called the objective function.
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Solutions and value

Definition
The point x is a solution of problem (P) (respectively, of problem (Q))
if x ∈ C and if for all x in C, f (x) ≤ f (x) (respectively, f (x) ≥ f (x)).

Sol(P) denotes the set of solutions of problem (P). Sol(Q)
denotes the set of solutions of problem (Q).

Definition
The value of problem (P) (respectively, of problem (Q)) is the
supremum (respectively, the infimum) of the set {f (x) | x ∈ C}.
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If x is a solution of problem (P) (respectively, of problem (Q)),
then f (x) = max{f (x) | x ∈ C} (respectively,
f (x) = min{f (x) | x ∈ C}) and f (x) is called the maximum
(respectively, the minimum) value of f on C.

Let d : A× A→ R+ be a distance on A, we remind that the set
{x ∈ A | d(x , x) < r} represents an open ball of A with center x
and radius r > 0.

Definition
The point x is a local solution of problem (P) (respectively, of problem
(Q)) if x ∈ C and if there exists r > 0 such that for all x in C such that
d(x , x) < r , we have that f (x) ≤ f (x) (respectively, f (x) ≥ f (x)).
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Examples of optimization problems

Consumer behavior. The utility function u represents the
preferences of the consumer on R`

+. Let p = (p1, . . . ,p`) be
price system and w ≥ 0 be the wealth of the consumer. The
consumer’s demand is the set of solutions of the following
maximization problem.

max u(x1, . . . , x`)
subject to p1x1 + . . .+ p`x` ≤ w , x1 ≥ 0, . . . , x` ≥ 0
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Cost minimization. We consider a firm that produces the good
`, using goods (1, . . . , `− 1) as inputs. We describe the
production set by a production function f from R`−1

+ to R. Let
p = (p1, . . . ,p`−1) be the price system of the inputs and y` ≥ 0
be a level of output. The cost function c(p, y`) of the firm is the
value fo the following problem.

min p1y1 + . . .+ p`−1y`−1
y` = f (y1, . . . , y`−1)
y1 ≥ 0, . . . , y`−1 ≥ 0

The firm’s demand of inputs is the set of solutions of this
problem.
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Game theory. The best response of a player is the solution of
the maximization of the payoff function with respect to the
strategy of this player, taking the strategies of the other players
as given.

Consider a game with two players. Gi : S1 × S2 → R,
Gi(s1, s2) ∈ R is the payoff function of player i = 1,2.

The best response of player i for a given strategy s̄j ∈ Sj of
player j , with j 6= i , is the set of solutions of the following
maximization problem :

max{Gi(si , s̄j) | si ∈ Si}
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Extreme Value Theorem (or Weierstrass Theorem)

Let f be a function from A ⊆ Rn to R.

Theorem

Problem (P) (respectively, problem (Q)) has a solution if C is a
non-empty closed and bounded subset of Rn, and f is continuous on
C.
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First order necessary conditions

Let U be an open subset of Rn and f be a continuously
differentiable function from U to R. We consider the two
following problems :

(P) max
x∈U

f (x) resp. (Q) min
x∈U

f (x)

Theorem
If x̄ is a solution of problem (P) (respectively, of problem (Q)),
then ∇f (x̄) = 0. That is, ∂f

∂xi
(x̄) = 0 for all i = 1, . . . ,n.
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First order sufficient conditions

Let U be an open and convex subset of Rn and f be a
continuously differentiable function from U to R.

Theorem
If f is concave in U and ∇f (x̄) = 0, then x̄ is a solution of
problem (P).

If f is convex in U and ∇f (x̄) = 0, then x̄ is a solution of
problem (Q).
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Second order necessary conditions for local solutions

We are now considering a function f that is C2 on U. We then
get information also on the second derivatives of f , that is, on
the Hessian matrix of f at any local solution x̄ .

Theorem

If x̄ is a local solution of problem (P) (respectively, of problem
(Q)), then ∇f (x̄) = 0 and the Hessian matrix Hf (x̄) of f at x̄ is
negative semi-definite (respectively, positive semi-definite).
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Second order sufficient conditions for local solutions

Let f be a C2 function on U.

Theorem

If x̄ ∈ U satisfies ∇f (x̄) = 0 and the Hessian matrix Hf (x̄) is
negative definite (respectively, positive definite), then x̄ is a
local solution of problem (P) (respectively, of problem (Q)).
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Linear independence : Constraint qualification

Let U be an open subset of Rn. The functions f and
g1, . . . ,gi , . . . ,gp are defined on U. We consider the following
optimization problems with equality constraints.

(P)

{
max
x∈U

f (x)

gi(x) = 0, i = 1, . . . ,p
(Q)

{
min
x∈U

f (x)

gi(x) = 0, i = 1, . . . ,p

Definition

Assume that g1, . . . ,gi , . . . ,gp are C1 on U. Let x̄ ∈ U be a point
such that gi(x̄) = 0 for all i = 1, . . . ,p. The constraint
qualification condition is satisfied at x̄ if all the gradient vectors
∇g1(x̄), . . . ,∇gi(x̄), . . . ,∇gp(x̄) are linearly independent.
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First order necessary conditions

Theorem

Assume that the functions f and g1, . . . ,gi , . . . ,gp are C1 on U.
Let x̄ ∈ U be a solution of problem (P) (resp., problem (Q)) that
satisfies the constraint qualification condition.

Then, there exists a vector of Lagrange multipliers
λ̄ = (λ̄1, . . . , λ̄i , . . . , λ̄p) ∈ Rp such that :

∇f (x̄)−
p∑

i=1

λ̄i∇gi(x̄) = 0
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A counterexample

Remark
Notice that the previous result does not hold true if the constraint
qualification condition is not satisfied. Indeed, consider the following
minimization problem :

min
(x,y)∈R2

f (x , y) = x + y

g1(x , y) = (x − 1)2 + y2 − 1 = 0
g2(x , y) = (x + 1)2 + y2 − 1 = 0

{(x , y) ∈ R2 | g1(x , y) = g2(x , y) = 0} = {(0,0)} = Set of solutions.
∇f (0,0) = (1,1), ∇g1(0,0) = (−2,0), ∇g2(0,0) = (2,0).
@(λ1, λ2) ∈ R2 such that ∇f (0,0) = λ1∇g1(0,0) + λ2∇g2(0,0).
∇g1(0,0) and ∇g2(0,0) are collinear.
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Lagrangian function

Definition
The Lagrangian function L associated with problem (P) (resp.,
problem (Q)) is the function from U × Rp to R defined by :

L(x , λ) = f (x)−
p∑

i=1

λigi(x)
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First order sufficient conditions

Let U be an open and convex subset of Rn.

Theorem

Assume that the functions f and g1, . . . ,gi , . . . ,gp are C1 on U.
Let x̄ ∈ U be a point such that gi(x̄) = 0 for all i = 1, . . . ,p.
If there exists a vector of Lagrange multipliers
λ̄ = (λ̄1, . . . , λ̄i , . . . , λ̄p) ∈ Rp such that

∇f (x̄)−
p∑

i=1

λ̄i∇gi(x̄) = 0,

and the Lagrangian function L is concave (resp., convex) in the
variables x, then x̄ is a solution of problem (P) (resp., problem
(Q)).
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Second order necessary conditions for local solutions

Assume that f and g1, . . . ,gi , . . . ,gp are C2 on U. Consider
x̄ ∈ U and the following set :

A(x̄) = {u ∈ Rn | ∇gi(x̄) · u = 0,∀i = 1, . . . ,p}.

Theorem
Let x̄ be a local solution of the problem (P) (resp. problem (Q))
that satisfies the constraint qualification condition. Let λ̄ ∈ Rp

such that ∇xL(x̄ , λ̄) = 0. Then, for all u ∈ A(x̄) :

u·HxxL(x̄ , λ̄)(u) = u·

(
Hf (x̄)−

p∑
i=1

λ̄iHgi(x̄)

)
(u) ≤ 0(resp. ≥ 0)
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Second order sufficient conditions for local solutions

Assume that f and g1, . . . ,gi , . . . ,gp are C2 on U.

Theorem
Let x̄ ∈ U such that gi(x̄) = 0 for all i = 1, ...,p, and
∇f (x̄)−

∑p
i=1 λ̄i∇gi(x̄) = 0, for some λ̄ ∈ Rp.

If the partial Hessian matrix of the Lagrangian function L(·, λ̄) at
x̄ , i.e., HxxL(x̄ , λ̄) is negative (resp., positive) definite on the
following set :

A(x̄) = {u ∈ Rn | ∇gi(x̄) · u = 0,∀i = 1, . . . ,p} \ {0}

Then x̄ is a local solution of problem (P) (resp., problem (Q)).
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A test for the second-order conditions

We assume that the constraint qualification condition is
satisfied. We rank the variables of x in such a way that the first
p columns of the Jacobian matrix Dg(x̄) are linearly
independent. This is possible because the Jacobian matrix
Dg(x̄) has rank p, since its rows are the gradients of the
constraint functions.
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For r = p + 1, . . . ,n, consider the determinants :

Br (x̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 ∂g1(x̄)
∂x1

. . . ∂g1(x̄)
∂xr

...
. . .

...
...

...
...

0 . . . 0 ∂gp(x̄)
∂x1

. . .
∂gp(x̄)
∂xr

∂g1(x̄)
∂x1

. . .
∂gp(x̄)
∂x1

∂2L(x̄)

∂x2
1

. . . ∂2L(x̄)
∂x1∂xr

...
. . .

...
...

...
...

∂g1(x̄)
∂xr

. . .
∂gp(x̄)
∂xr

∂2L(x̄)
∂xr∂x1

. . . ∂2L(x̄)

∂x2
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Proposition

If for all r = p + 1, . . . ,n, the determinants (−1)pBr (x̄) are
positive, then the partial Hessian matrix of the Lagrangian
function L(·, λ̄) at x̄ , i.e., HxxL(x̄ , λ̄) is positive definite on
A(x̄) \ {0}.

If for all r = p + 1, . . . ,n, the determinants (−1)r Br (x̄) are
positive, then the partial Hessian matrix of the Lagrangian
function L(·, λ̄) at x̄ , i.e., HxxL(x̄ , λ̄) is negative definite on
A(x̄) \ {0}.
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A heuristic approach

Consider b = (b1, ...,bi , ...,bp) ∈ Rp and the “perturbed"
problem :

(P(b))

{
min
x∈U

f (x)

gi(x) = bi , i = 1, . . . ,p

Assume that the value function v(b) of problem (P(b)) is well
defined and differentiable around 0 ∈ Rp.
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Let x∗ be a solution of problem (P(0)). For all x in a open
neighborhood of x∗,

V (x) := f (x)− v(g(x)) ≥ 0 and V (x∗) = 0.

Hence, x∗ minimizes the function V in an open set, and then
∇V (x∗) = 0. From the chain rule for differentiable mappings :

∇V (x∗) = 0 = ∇f (x∗)− DgT (x∗)∇v(0)

or equivalently,

∇f (x∗) =

p∑
i=1

∂v(0)

∂bi
∇gi(x∗)

Then, each multiplier λi is equal to the partial derivative ∂v(0)
∂bi

of
the value function v at 0.
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A simple unique linear constraint

Let us consider the case where we have a unique linear
constraint :

g1(x) = a1x1 + a2x2 + . . .+ anxn + b1

If an 6= 0, for all x1, x2, . . . , xn−1 ∈ Rn−1, we have a unique xn
such that g1(x1, x2, . . . , xn) = 0, which is given by the simple
formula :

xn = ϕ(x1, x2, , . . . , xn−1) = b1−(1/an)(a1x1+a2x2+. . .+an−1xn−1)

Then, the set S = {x ∈ Rn | g1(x) = 0} is implicitly described
by the function ϕ as follows :

S = {x ∈ Rn | xn = ϕ(x1, x2, . . . , xn−1)}
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We remark that ϕ is a differentiable mapping and

∂ϕ
∂xi

(x1, x2, . . . , xn−1) = −(ai/an)

= −
(
∂g1
∂xi

(x1, x2, , . . . , xn)/∂g1
∂xn

(x1, x2, , . . . , xn)
)

If x∗ = (x∗1 , x
∗
2 , . . . , x

∗
n−1, x

∗
n ) is a solution of problem (S) :

(S)

{
min
x∈U

f (x)

g1(x) = 0

then x∗n = ϕ(x∗1 , x
∗
2 , . . . , x

∗
n−1) and (x∗1 , x

∗
2 , . . . , x

∗
n−1) is a solution

of the following unconstrained problem.
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{
min f (x1, . . . , xn−1, ϕ(x1, . . . , xn−1))
(x1, x2, . . . , xn−1) ∈ A

By first order necessary conditions, the gradient of the objective
function of this problem must be equal to zero. That is, for all
i = 1, . . . ,n − 1 :

∂f
∂xi

(x∗) +
∂f
∂xn

(x∗)
∂ϕ

∂xi
(x∗1 , x

∗
2 , . . . , x

∗
n−1) = 0

Hence, we have :

∂f
∂xi

(x∗) = (ai/an)
∂f
∂xn

(x∗), ∀ i = 1, . . . ,n − 1

Since ai = ∂g1
∂xi

(x∗), one easily recognizes the first order
conditions associated with the constrained problem (S), i.e.,
∇f (x∗) = λ∇g1(x∗) with λ = (1/an) ∂f

∂xn
(x∗).
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