OPTIMIZATION A Week 2: Thursday, November 7, 2024

Elena del Mercato

- Inequality constraints
- Karush-Kuhn-Tucker (KKT) conditions
- KKT necessary conditions
- KKT sufficient conditions

重き B

ヨチ イ

← ロ ▶ → 伊

 298

Inequality constraints

Let U be an **open** subset of \mathbb{R}^n . The functions f and *h*1, . . . , *h^j* , . . . , *h^m* are defined on *U*.

We study the **maximization** problem (\mathcal{I}) with the following **inequality constraints** (i.e., \leq 0).

$$
(I) \left\{\begin{array}{l}\max_{x \in U} f(x) \\ h_j(x) \leq 0, j = 1, \ldots, m\end{array}\right.
$$

The adaptation of the following study to minimization problems of a function *g* or optimization problems with inequality constraints described by the inequality $g_i(x) \geq 0$ is left to the reader, by remarking that :

$$
p \min g(x) = \max f(x), \text{ with } f(x) = -g(x).
$$

2 $g_i(x) \ge 0$ if and only if $h_i(x) \le 0$, with $h_i(x) = -g_i(x)$.

Binding constraints

Definition

Let *x* [∗] ∈ *U*, we say that the constraint *j* is **binding** at *x* ∗ if $h_j(x^*) = 0$. We denote :

1 $J(x^*)$ the set of all binding constraints at x^* , that is :

$$
J(x^*) := \{j = 1, ..., m : h_j(x^*) = 0\},\
$$

² *m*[∗] ≤ *m* the number of elements of *J*(*x* ∗), and **3** $h^* := (h_j)_{j \in J(X^*)}$ the following mapping :

$$
h^*: x \in U \subseteq \mathbb{R}^n \longrightarrow h^*(x) = (h_j(x))_{j \in J(x^*)} \in \mathbb{R}^{m^*}
$$

K 御 ▶ K ヨ ▶ K ヨ ▶

 $2Q$

Karush-Kuhn-Tucker (KKT) conditions

From now on, f and $h_1, \ldots, h_j, \ldots, h_m$ are \mathcal{C}^1 on $U.$

KKT conditions associated with the maximization problem (\mathcal{I}) :

$$
(KKT) \left\{\begin{array}{l}\nabla f(x) = \sum_{j=1}^{m} \mu_j \nabla h_j(x),\\ \forall j = 1, ..., m, \mu_j \in \mathbb{R}_+ \text{ and } h_j(x) \leq 0,\\ \forall j = 1, ..., m, \mu_j h_j(x) = 0 \text{ (complementary slackness)}.\n\end{array}\right.
$$

That is, at *x* :

1) The gradient of the objective function is a linear combination of the gradients of the constraint functions, with positive coefficients $\mu_i \geq 0$.

2) All the constraints are satisfied.

3) If $\mu_i > 0$, then the constraint *j* is **binding** at *x*. If *x* belongs to t[he](#page-3-0) **i[n](#page-5-0)terior** of constraint *[j](#page-4-0)*, i.e., $h_j(x) < 0$, then $\mu_j = 0$ $\mu_j = 0$ $\mu_j = 0$.

Let $x^* \in U$ be a solution of problem $(\mathcal{I}).$

The main idea to prove that KKT conditions are necessary to solve problem (\mathcal{I}) is to replace problem (\mathcal{I}) with the *linearized* problem (\mathcal{L}^*) :

$$
(\mathcal{L}^*)\left\{\begin{array}{l}\max_{x\in\mathbb{R}^n}\nabla f(x^*)\cdot(x-x^*)\\ \nabla h_j(x^*)\cdot(x-x^*)\leq 0, j\in J(x^*)\end{array}\right.
$$

Notice that, in problem (\mathcal{L}^*) , what really matters is the use of the **binding constraints** at *x* ∗ .

イロメ イ押 メイヨメ イヨメ

Generalized constraint qualification condition

Definition

Let $x^* \in U$ be a solution of problem (\mathcal{I}) such that $h_j(x^*) = 0$ for all *j* ∈ *J*(*x* ∗). The generalized constraint qualification (GCQ) condition is satisfied at *x* ∗ if *x* ∗ is **also** a solution of problem (\mathcal{L}^*) .

Remark that condition GCQ is not always satisfied.

One can easily find examples where *x* [∗] ∈ S*ol*(I), but $x^* \notin Sol(\mathcal{L}^*)$.

K ロ ト K 伊 ト K ヨ ト K

Theorem

Assume that f and $h_1,\ldots,h_j,\ldots,h_m$ are \mathcal{C}^1 on $\mathsf{U}.$

If x[∗] ∈ *U is a solution of problem* (I) *and x*[∗] *satisfies condition GCQ, then there exists* $\mu^* = (\mu_1^*, ..., \mu_j^*, ..., \mu_m^*) \in \mathbb{R}_+^m$ such that *the vector* $(x^*, \mu^*) \in U \times \mathbb{R}^m_+$ *satisfies the KKT conditions associated with problem* (\mathcal{I}) *.*

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 290

If
$$
\nabla f(x^*) = 0
$$
, take $\mu_j^* = 0$ for all $j = 1, ..., m$.

Assume now that $\nabla f(x^*) \neq 0$. Since x^* solves problem $(L^*),$ there is no $x \neq x^*$ such that :

$$
\nabla f(x^*)\cdot (x-x^*)>0=\nabla f(x^*)\cdot (x^*-x^*),
$$

and

$$
\nabla h_j(x^*)\cdot (x-x^*)\leq 0, \ \forall j\in J(x^*).
$$

Take $b=\nabla f(x^*),$ and $\boldsymbol{a}^j=\nabla h_j(x^*)$ for all $j\in\mathsf{J}(x^*).$

イロト イ部 トイ磨 トイ磨 ト

÷. QQ

By **Farkas' Lemma**, there exists $\mu^* = (\mu_j^*)_{j \in J(x^*)} \in \mathbb{R}_+^{m^*}$ such that :

$$
b=\sum_{j\in J(x^*)}\mu_j^*a^j.
$$

For all $j \notin J(x^*)$, take $\mu_j^* = 0$.

By construction, we get $\mu_j^* h_j(x^*) = 0$ for all $j = 1, ..., m$, and

$$
\nabla f(x^*) = \sum_{j=1}^m \mu_j^* \nabla h_j(x^*).
$$

Further, $h_j(x^*) \leq 0$ for all $j = 1, ..., m$, because x^* is a solution of problem (\mathcal{I}) .

Hence, (x^*, μ^*) satisfies the KKT conditions associated with problem (\mathcal{I}) .

KOD KAP KED KED E LORO

Sufficient conditions for generalized constraint qualification

Theorem

*Assume that f and h*1, . . . , *h^j* , . . . , *h^m are* C ¹ *on U.*

- ¹ *If h^j is linear or affine for all j* = 1, ..., *m, then condition GCQ is satisfied.*
- ² **(Slater's condition)** *Assume that U is also convex and :*
	- *the constraint functions h^j is convex for all j* = 1, ..., *m,*
	- there exists $\widetilde{x} \in U$ such that $h_i(\widetilde{x}) < 0$ for all $j = 1, ..., m$.

Then, condition GCQ is satisfied.

³ **(Rank condition)** *If all the gradients* (∇*hj*(*x* ∗))*j*∈*J*(*^x* [∗]) *are linearly independent, i.e., the rank of the Jacobian matrix Dh*[∗] (*x* ∗) *is equal to m*[∗] *(full row rank), then condition GCQ is satisfied.*

Remark 1 In the Rank condition, one easily recognizes the classical constraint qualification condition given for optimization problems with **equality constraints**.

Remark 2 In Slater's condition, the convexity of *h^j* can be weakened by another assumption, that is, *h^j* is "pseudo-convex".

It is well know that :

- **1** A $C¹$ convex function is pseudo-convex.
- **2** A $C¹$ quasi-convex function with gradient different from zero everywhere is pseudo-convex. Hence, in Slater's condition, the convexity of *h^j* can be replaced with the following assumption :
	- h_j is quasi-convex with $\nabla h_j(x) \neq 0$ for all $x \in U$.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 QQ

As a consequence of the previous two theorems one gets the following theorem.

Theorem

*Assume that f and h*1, . . . , *h^j* , . . . , *h^m are* C ¹ *on U. Let* $x^* \in U$ *be a solution of problem* (T) *. Assume that one of the following three conditions is satisfied.*

- ¹ *If h^j is linear or affine for all j* = 1, ..., *m.*
- ² **Slater's condition.**
- ³ **Rank condition.**

Then, there exists $\mu^* = (\mu_1^*, ..., \mu_j^*, ..., \mu_m^*) \in \mathbb{R}^m_+$ such that $(\textit{\textbf{x}}^*, \mu^*) \in \textit{\textbf{U}} \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with *problem* (\mathcal{I}) *.*

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 $2Q$

[13](#page-0-0)

Let U be an **open and convex** subset of \mathbb{R}^n .

Theorem

*Assume that f and h*1, . . . , *h^j* , . . . , *h^m are* C ¹ *on U.*

If there exists $\mu^* = (\mu_1^*,...,\mu_j^*,...,\mu_m^*) \in \mathbb{R}_+^m$ such that (*x* ∗ , µ[∗]) ∈ *U* × R *m* ⁺ *satisfies the KKT conditions associated with problem* (\mathcal{I}) *, and the following condition* (C) *holds true, then* x^* *is a solution of problem* (\mathcal{I}) *.*

Condition (C) : The function $\mathcal{L}(x) = f(x) - \sum_{j=1}^{m} \mu_j^* h_j(x)$ *<i>is concave in x.*

イロト イ御 トイ君 トイ

Let U be an **open and convex** subset of \mathbb{R}^n . Assume that f and $h_1, \ldots, h_j, \ldots, h_m$ are \mathcal{C}^1 on $U.$

Proposition

The previous theorem still holds true if Condition (C) is replaced by one of the following two conditions.

- ¹ *The objective function f is concave and the constraint functions h_i* are **quasi-convex** for all $j = 1, ..., m$.
- **2** *The objective function f is quasi-concave with* $\nabla f(x) \neq 0$ *for all* $x \in U$, and the constraint functions h_i are *guasi-convex for all* $j = 1, ..., m$ *.*

Hence, in order to check if KKT conditions are sufficient to solve problem (\mathcal{I}) , we have to verify also some properties of the **objective function** *f*.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

Sketch of the proof

Without loss of generality, *f* is pseudo-concave on *U*.

Assume that there exists $\mu^* = (\mu_1^*,...,\mu_j^*,...,\mu_m^*) \in \mathbb{R}_+^m$ such that $(x^*, \mu^*) \in U \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with problem (\mathcal{I}) .

If $\nabla f(x^*) = 0$, then $f(x) \le f(x^*)$ for all $x \in U$ (because *U* is **open** and *f* is pseudo-concave on *U*). Hence, $f(x) \le f(x^*)$ for all $x \in U$ such that $h_i(x) \leq 0$ for all $j = 1, ..., m$. Further, $h_j(x^*) \leq 0$ for all $j = 1, ..., m$. Then, x^* solves problem (\mathcal{I}) .

Assume now that $\nabla f(x^*) \neq 0$.

By contradiction, if x^* is not a solution of problem (\mathcal{I}) , then $x, y \in U$, $x \neq x^*$, such that $h_j(x) \leq 0$ for all $j = 1, ..., m$, and $f(x) > f(x^*)$. By pseudo-concavity of *f*, one gets :

$$
\nabla f(x^*)\cdot (x-x^*)>0.
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

 QQ

Since h_j is quasi-convex and $h_j(x) \leq 0 = h_j(x^*)$ for all $j \in J(x^*),$ we have that $\nabla h_j(x^*)\cdot(x-x^*)\leq 0$ for all $j\in\mathsf{J}(x^*)$. Then, we $\mathsf{get}\ \mu_j^*\nabla h_j(x^*)\cdot (x-x^*)\leq 0\ \text{for all}\ j\in\mathsf{J}(x^*),\ \text{because}\ \mu_j^*\geq 0.$ If $j \notin J(x^*)$, then $\mu_j^* = 0$, because of complementary slackness. Hence, we get :

$$
\mu_j^* \nabla h_j(x^*) \cdot (x - x^*) \leq 0, \ \forall j = 1, ..., m.
$$

Summing over $j = 1, ..., m$, we have:

$$
\sum_{j=1}^m \mu_j^* \nabla h_j(x^*) \cdot (x - x^*) < \nabla f(x^*) \cdot (x - x^*).
$$

That is impossible, because $\sum_{j=1}^m \mu_j^* \nabla h_j(x^*) = \nabla f(x^*)$. We then conclude that x^* must be a solution of problem $(\mathcal{I}).$

イロト イ団 トイヨ トイヨ トー

Farkas' Lemma is a consequence of one of the Separation Theorems, and it is often used in mathematical programming.

Let $A = \{a^1, ..., a^j, ..., a^m\}$ be a set of m points of \mathbb{R}^n .

K(*A*) denotes the set of all linear combinations of elements of *A* with positive coefficients :

$$
K(A) = \left\{ z = \sum_{j=1}^m \mu_j a^j \in \mathbb{R}^n \colon \mu_j \geq 0 \text{ and } a^j \in A, \ \forall j = 1, ..., m \right\}.
$$

That is, *K*(*A*) is the smallest (in the sense of inclusion) **convex cone** of vertex 0 generated by $a^1, ..., a^j, ..., a^m$.

K ロ ト K 個 ト K 君 ト K 君 ト .

 QQ

Theorem (Farkas' Lemma)

Let $A = \{a^1, ..., a^j, ..., a^m\}$ be a set of m points of \mathbb{R}^n . Consider any point $b \in \mathbb{R}^n$.

Then, only one of the following two alternatives holds true.

1 There exists
$$
\mu = (\mu_1, ..., \mu_j, ..., \mu_m) \in \mathbb{R}_+^m
$$
 such that :

$$
b=\sum_{j=1}^m \mu_j a^j.
$$

2 There exists $p \in \mathbb{R}^n$ with $p \neq 0$ such that :

$$
p \cdot b > 0 \text{ and } p \cdot a^j \leq 0, \ \forall \ j = 1, ..., m.
$$

④ ティミト

つくい

Let *U* be an **open and convex** subset of \mathbb{R}^n , *f* is a \mathcal{C}^1 on *C*.

Definition (Pseudo-concavity)

f is pseudo-concave on *U* if for all *x* and \overline{x} in *U* with $x \neq \overline{x}$,

$$
f(x) > f(\overline{x}) \Longrightarrow \nabla f(\overline{x}) \cdot (x - \overline{x}) > 0
$$

A function *g* is pseudo-convex on *U* if and only if the function $f = -g$ is pseudo-concave on U .

Proposition

- **1** If f is concave on U, then f is pseudo-concave on U.
- **2** If f is quasi-concave on U and $\nabla f(x) \neq 0$ for all $x \in U$, *then f is pseudo-concave on U.*

K ロ ▶ K 伊 ▶ K ヨ ▶

つひへ