OPTIMIZATION A Week 2: Thursday, November 7, 2024

Elena del Mercato

ъ

- Inequality constraints
- Karush-Kuhn-Tucker (KKT) conditions
- KKT necessary conditions
- KKT sufficient conditions

ъ

Inequality constraints

Let *U* be an **open** subset of \mathbb{R}^n . The functions *f* and $h_1, \ldots, h_j, \ldots, h_m$ are defined on *U*.

We study the **maximization** problem (\mathcal{I}) with the following **inequality constraints** (i.e., ≤ 0).

$$(\mathcal{I}) \left\{ egin{array}{l} \max_{x \in U} f(x) \ h_j(x) \leq \mathsf{0}, j = \mathsf{1}, \dots, m \end{array}
ight.$$

The adaptation of the following study to minimization problems of a function g or optimization problems with inequality constraints described by the inequality $g_j(x) \ge 0$ is left to the reader, by remarking that :

$$f(x) = \max f(x), \text{ with } f(x) = -g(x).$$

② $g_j(x) \ge 0$ if and only if $h_j(x) \le 0$, with $h_j(x) = -g_j(x)$.

Binding constraints

Definition

Let $x^* \in U$, we say that the constraint *j* is **binding** at x^* if $h_j(x^*) = 0$. We denote :

• $J(x^*)$ the set of all binding constraints at x^* , that is :

$$J(x^*) := \{j = 1, ..., m : h_j(x^*) = 0\},\$$

m^{*} ≤ *m* the number of elements of *J*(*x*^{*}), and *h*^{*} := (*h_j*)_{*j*∈*J*(*x*^{*})} the following mapping :

$$h^*: x \in U \subseteq \mathbb{R}^n \longrightarrow h^*(x) = (h_j(x))_{j \in J(x^*)} \in \mathbb{R}^{m^*}$$

Karush-Kuhn-Tucker (KKT) conditions

From now on, *f* and $h_1, \ldots, h_j, \ldots, h_m$ are C^1 on *U*.

KKT conditions associated with the maximization problem $\left(\mathcal{I}\right)$:

$$(KKT) \begin{cases} \nabla f(x) = \sum_{j=1}^{m} \mu_j \nabla h_j(x), \\ \forall j = 1, ..., m, \ \mu_j \in \mathbb{R}_+ \ and \ h_j(x) \le 0, \\ \forall j = 1, ..., m, \ \mu_j h_j(x) = 0 \ (complementary \ slackness). \end{cases}$$

That is, at x :

1) The gradient of the objective function is a linear combination of the gradients of the constraint functions, with positive coefficients $\mu_j \ge 0$.

2) All the constraints are satisfied.

3) If $\mu_j > 0$, then the constraint *j* is **binding** at *x*. If *x* belongs to the **interior** of constraint *j*, i.e., $h_j(x) < 0$, then $\mu_j = 0$.

Let $x^* \in U$ be a solution of problem (\mathcal{I}).

The main idea to prove that KKT conditions are necessary to solve problem (\mathcal{I}) is to replace problem (\mathcal{I}) with the *linearized* problem (\mathcal{L}^*) :

$$(\mathcal{L}^*) \left\{egin{array}{l} \max_{x\in\mathbb{R}^n}
abla f(x^*)\cdot(x-x^*)\
abla h_j(x^*)\cdot(x-x^*)\leq 0, \, j\in J(x^*) \end{array}
ight.$$

Notice that, in problem (\mathcal{L}^*), what really matters is the use of the **binding constraints** at x^* .

Generalized constraint qualification condition

Definition

Let $x^* \in U$ be a solution of problem (\mathcal{I}) such that $h_j(x^*) = 0$ for all $j \in J(x^*)$. The generalized constraint qualification (GCQ) condition is satisfied at x^* if x^* is **also** a solution of problem (\mathcal{L}^*) .

Remark that condition GCQ is not always satisfied.

One can easily find examples where $x^* \in Sol(\mathcal{I})$, but $x^* \notin Sol(\mathcal{L}^*)$.

Theorem

Assume that f and $h_1, \ldots, h_j, \ldots, h_m$ are C^1 on U.

If $x^* \in U$ is a solution of problem (\mathcal{I}) and x^* satisfies condition GCQ, then there exists $\mu^* = (\mu_1^*, ..., \mu_j^*, ..., \mu_m^*) \in \mathbb{R}^m_+$ such that the vector $(x^*, \mu^*) \in U \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with problem (\mathcal{I}) .

If
$$\nabla f(x^*) = 0$$
, take $\mu_j^* = 0$ for all $j = 1, ..., m$.

Assume now that $\nabla f(x^*) \neq 0$. Since x^* solves problem (\mathcal{L}^*), there is no $x \neq x^*$ such that :

$$\nabla f(x^*) \cdot (x - x^*) > 0 = \nabla f(x^*) \cdot (x^* - x^*),$$

and

$$abla h_j(x^*) \cdot (x - x^*) \leq 0, \ \forall j \in J(x^*).$$

Take $b = \nabla f(x^*)$, and $a^j = \nabla h_j(x^*)$ for all $j \in J(x^*)$.

《曰》《圖》《臣》《臣》:

By **Farkas' Lemma**, there exists $\mu^* = (\mu_j^*)_{j \in J(x^*)} \in \mathbb{R}^{m^*}_+$ such that :

$$\boldsymbol{b} = \sum_{j \in J(\boldsymbol{x}^*)} \mu_j^* \boldsymbol{a}^j.$$

For all $j \notin J(x^*)$, take $\mu_j^* = 0$.

By construction, we get $\mu_i^* h_j(x^*) = 0$ for all j = 1, ..., m, and

$$\nabla f(x^*) = \sum_{j=1}^m \mu_j^* \nabla h_j(x^*).$$

Further, $h_j(x^*) \le 0$ for all j = 1, ..., m, because x^* is a solution of problem (\mathcal{I}).

Hence, (x^*, μ^*) satisfies the KKT conditions associated with problem (\mathcal{I}).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Sufficient conditions for generalized constraint qualification

Theorem

Assume that f and $h_1, \ldots, h_j, \ldots, h_m$ are C^1 on U.

- If h_j is linear or affine for all j = 1, ..., m, then condition GCQ is satisfied.
- (Slater's condition) Assume that U is also convex and :
 - the constraint functions h_j is **convex** for all j = 1, ..., m,
 - there exists $\tilde{x} \in U$ such that $h_j(\tilde{x}) < 0$ for all j = 1, ..., m.

Then, condition GCQ is satisfied.

(Rank condition) If all the gradients (∇h_j(x*))_{j∈J(x*)} are linearly independent, i.e., the rank of the Jacobian matrix Dh*(x*) is equal to m* (full row rank), then condition GCQ is satisfied. **Remark 1** In the Rank condition, one easily recognizes the classical constraint qualification condition given for optimization problems with **equality constraints**.

Remark 2 In Slater's condition, the convexity of h_j can be weakened by another assumption, that is, h_j is "pseudo-convex".

It is well know that :

- A C^1 convex function is pseudo-convex.
- A C¹ quasi-convex function with gradient different from zero everywhere is pseudo-convex. Hence, in Slater's condition, the convexity of h_j can be replaced with the following assumption :
 - h_j is quasi-convex with $\nabla h_j(x) \neq 0$ for all $x \in U$.

As a consequence of the previous two theorems one gets the following theorem.

Theorem

Assume that f and $h_1, \ldots, h_j, \ldots, h_m$ are C^1 on U. Let $x^* \in U$ be a solution of problem (\mathcal{I}) . Assume that **one** of the following three conditions is satisfied.

- If h_j is linear or affine for all j = 1, ..., m.
- Slater's condition.
- Rank condition.

Then, there exists $\mu^* = (\mu_1^*, ..., \mu_j^*, ..., \mu_m^*) \in \mathbb{R}^m_+$ such that $(x^*, \mu^*) \in U \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with problem (\mathcal{I}) .

Let *U* be an **open and convex** subset of \mathbb{R}^n .

Theorem

Assume that f and $h_1, \ldots, h_j, \ldots, h_m$ are C^1 on U.

If there exists $\mu^* = (\mu_1^*, ..., \mu_j^*, ..., \mu_m^*) \in \mathbb{R}^m_+$ such that $(x^*, \mu^*) \in U \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with problem (\mathcal{I}), and the following condition (C) holds true, then x^* is a solution of problem (\mathcal{I}).

Condition (C) : The function $\mathcal{L}(x) = f(x) - \sum_{j=1}^{m} \mu_j^* h_j(x)$ is concave in *x*.

Let *U* be an **open and convex** subset of \mathbb{R}^n . Assume that *f* and $h_1, \ldots, h_j, \ldots, h_m$ are \mathcal{C}^1 on *U*.

Proposition

The previous theorem still holds true if **Condition (C)** is replaced by **one** of the following two conditions.

- The objective function f is concave and the constraint functions h_j are quasi-convex for all j = 1, ..., m.
- 2 The objective function f is quasi-concave with ∇f(x) ≠ 0 for all x ∈ U, and the constraint functions h_j are quasi-convex for all j = 1, ..., m.

Hence, in order to check if KKT conditions are sufficient to solve problem (\mathcal{I}), we have to verify also some properties of the **objective function** *f*.

イロト イポト イヨト イヨト

Sketch of the proof

Without loss of generality, f is pseudo-concave on U.

Assume that there exists $\mu^* = (\mu_1^*, ..., \mu_j^*, ..., \mu_m^*) \in \mathbb{R}^m_+$ such that $(x^*, \mu^*) \in U \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with problem (\mathcal{I}).

If $\nabla f(x^*) = 0$, then $f(x) \le f(x^*)$ for all $x \in U$ (because *U* is **open** and *f* is pseudo-concave on *U*). Hence, $f(x) \le f(x^*)$ for all $x \in U$ such that $h_j(x) \le 0$ for all j = 1, ..., m. Further, $h_j(x^*) \le 0$ for all j = 1, ..., m. Then, x^* solves problem (\mathcal{I}).

Assume now that $\nabla f(x^*) \neq 0$.

By contradiction, if x^* is not a solution of problem (\mathcal{I}), then there is $x \in U$, $x \neq x^*$, such that $h_j(x) \leq 0$ for all j = 1, ..., m, and $f(x) > f(x^*)$. By pseudo-concavity of f, one gets :

$$\nabla f(x^*) \cdot (x-x^*) > 0.$$

<ロ> (四) (四) (三) (三) (三) (三)

Since h_j is quasi-convex and $h_j(x) \le 0 = h_j(x^*)$ for all $j \in J(x^*)$, we have that $\nabla h_j(x^*) \cdot (x - x^*) \le 0$ for all $j \in J(x^*)$. Then, we get $\mu_j^* \nabla h_j(x^*) \cdot (x - x^*) \le 0$ for all $j \in J(x^*)$, because $\mu_j^* \ge 0$. If $j \notin J(x^*)$, then $\mu_j^* = 0$, because of complementary slackness. Hence, we get :

$$\mu_j^* \nabla h_j(x^*) \cdot (x - x^*) \leq 0, \ \forall j = 1, ..., m.$$

Summing over j = 1, ..., m, we have :

$$\sum_{j=1}^m \mu_j^* \nabla h_j(x^*) \cdot (x-x^*) < \nabla f(x^*) \cdot (x-x^*).$$

That is impossible, because $\sum_{j=1}^{m} \mu_j^* \nabla h_j(x^*) = \nabla f(x^*)$. We then conclude that x^* must be a solution of problem (\mathcal{I}).

Farkas' Lemma is a consequence of one of the Separation Theorems, and it is often used in mathematical programming.

Let
$$A = \{a^1, ..., a^j, ..., a^m\}$$
 be a set of *m* points of \mathbb{R}^n .

K(A) denotes the set of all linear combinations of elements of A with positive coefficients :

$$\mathcal{K}(\mathcal{A}) = \left\{ z = \sum_{j=1}^{m} \mu_j a^j \in \mathbb{R}^n \colon \mu_j \ge 0 \text{ and } a^j \in \mathcal{A}, \ \forall j = 1, ..., m \right\}.$$

That is, K(A) is the smallest (in the sense of inclusion) **convex cone** of vertex 0 generated by $a^1, ..., a^j, ..., a^m$.

Theorem (Farkas' Lemma)

Let $A = \{a^1, ..., a^j, ..., a^m\}$ be a set of m points of \mathbb{R}^n . Consider any point $b \in \mathbb{R}^n$.

Then, only one of the following two alternatives holds true.

• There exists $\mu = (\mu_1, ..., \mu_j, ..., \mu_m) \in \mathbb{R}^m_+$ such that :

$$\boldsymbol{b} = \sum_{j=1}^{m} \mu_j \boldsymbol{a}^j.$$

2 There exists $p \in \mathbb{R}^n$ with $p \neq 0$ such that :

$$p \cdot b > 0$$
 and $p \cdot a^j \le 0, \ \forall \ j = 1, ..., m$.

Let *U* be an **open and convex** subset of \mathbb{R}^n , *f* is a \mathcal{C}^1 on *C*.

Definition (Pseudo-concavity)

f is pseudo-concave on *U* if for all *x* and \overline{x} in *U* with $x \neq \overline{x}$,

$$f(x) > f(\overline{x}) \Longrightarrow \nabla f(\overline{x}) \cdot (x - \overline{x}) > 0$$

A function *g* is pseudo-convex on *U* if and only if the function f = -g is pseudo-concave on *U*.

Proposition

- If f is concave on U, then f is pseudo-concave on U.
- ② If f is quasi-concave on U and $\nabla f(x) \neq 0$ for all $x \in U$, then f is pseudo-concave on U.