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Inequality constraints

Let U be an open subset of Rn. The functions f and
h1, . . . ,hj , . . . ,hm are defined on U.

We study the maximization problem (I) with the following
inequality constraints (i.e., ≤ 0).

(I)

{
max
x∈U

f (x)

hj(x) ≤ 0, j = 1, . . . ,m

The adaptation of the following study to minimization problems
of a function g or optimization problems with inequality
constraints described by the inequality gj(x) ≥ 0 is left to the
reader, by remarking that :

1 ming(x) = max f (x), with f (x) = −g(x).
2 gj(x) ≥ 0 if and only if hj(x) ≤ 0, with hj(x) = −gj(x).
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Binding constraints

Definition

Let x∗ ∈ U, we say that the constraint j is binding at x∗ if
hj(x∗) = 0. We denote :

1 J(x∗) the set of all binding constraints at x∗, that is :

J(x∗) := {j = 1, ...,m : hj(x∗) = 0},

2 m∗ ≤ m the number of elements of J(x∗), and
3 h∗ := (hj)j∈J(x∗) the following mapping :

h∗ : x ∈ U ⊆ Rn −→ h∗(x) = (hj(x))j∈J(x∗) ∈ Rm∗
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Karush-Kuhn-Tucker (KKT) conditions

From now on, f and h1, . . . ,hj , . . . ,hm are C1 on U.

KKT conditions associated with the maximization problem (I) :

(KKT )


∇f (x) =

∑m
j=1 µj∇hj(x),

∀j = 1, ...,m, µj ∈ R+ and hj(x) ≤ 0,
∀j = 1, ...,m, µjhj(x) = 0 (complementary slackness).

That is, at x :
1) The gradient of the objective function is a linear combination
of the gradients of the constraint functions, with positive
coefficients µj ≥ 0.
2) All the constraints are satisfied.
3) If µj > 0, then the constraint j is binding at x . If x belongs to
the interior of constraint j , i.e., hj(x) < 0, then µj = 0.
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Linearized problem

Let x∗ ∈ U be a solution of problem (I).

The main idea to prove that KKT conditions are necessary to
solve problem (I) is to replace problem (I) with the linearized
problem (L∗) :

(L∗)

{
max
x∈Rn

∇f (x∗) · (x − x∗)

∇hj(x∗) · (x − x∗) ≤ 0, j ∈ J(x∗)

Notice that, in problem (L∗), what really matters is the use of
the binding constraints at x∗.
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Generalized constraint qualification condition

Definition
Let x∗ ∈ U be a solution of problem (I) such that hj(x∗) = 0 for
all j ∈ J(x∗). The generalized constraint qualification (GCQ)
condition is satisfied at x∗ if x∗ is also a solution of problem
(L∗).

Remark that condition GCQ is not always satisfied.

One can easily find examples where x∗ ∈ Sol(I), but
x∗ /∈ Sol(L∗).
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Existence of Lagrange multipliers

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.

If x∗ ∈ U is a solution of problem (I) and x∗ satisfies condition
GCQ, then there exists µ∗ = (µ∗1, ..., µ

∗
j , ..., µ

∗
m) ∈ Rm

+ such that
the vector (x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions
associated with problem (I).
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Sketch of the proof

If ∇f (x∗) = 0, take µ∗j = 0 for all j = 1, ...,m.

Assume now that ∇f (x∗) 6= 0. Since x∗ solves problem (L∗),
there is no x 6= x∗ such that :

∇f (x∗) · (x − x∗) > 0 = ∇f (x∗) · (x∗ − x∗),

and
∇hj(x∗) · (x − x∗) ≤ 0, ∀j ∈ J(x∗).

Take b = ∇f (x∗), and aj = ∇hj(x∗) for all j ∈ J(x∗).
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By Farkas’ Lemma, there exists µ∗ = (µ∗j )j∈J(x∗) ∈ Rm∗
+ such

that :
b =

∑
j∈J(x∗)

µ∗j aj .

For all j /∈ J(x∗), take µ∗j = 0.

By construction, we get µ∗j hj(x∗) = 0 for all j = 1, ...,m, and

∇f (x∗) =
m∑

j=1

µ∗j ∇hj(x∗).

Further, hj(x∗) ≤ 0 for all j = 1, ...,m, because x∗ is a solution
of problem (I).

Hence, (x∗, µ∗) satisfies the KKT conditions associated with
problem (I).
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Sufficient conditions for generalized constraint
qualification

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.
1 If hj is linear or affine for all j = 1, ...,m, then condition

GCQ is satisfied.
2 (Slater’s condition) Assume that U is also convex and :

the constraint functions hj is convex for all j = 1, ...,m,
there exists x̃ ∈ U such that hj(x̃) < 0 for all j = 1, ...,m.

Then, condition GCQ is satisfied.
3 (Rank condition) If all the gradients (∇hj(x∗))j∈J(x∗) are

linearly independent, i.e., the rank of the Jacobian matrix
Dh∗(x∗) is equal to m∗ (full row rank), then condition GCQ
is satisfied.
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Two remarks

Remark 1 In the Rank condition, one easily recognizes the
classical constraint qualification condition given for optimization
problems with equality constraints.

Remark 2 In Slater’s condition, the convexity of hj can be
weakened by another assumption, that is, hj is
“pseudo-convex”.

It is well know that :
1 A C1 convex function is pseudo-convex.
2 A C1 quasi-convex function with gradient different from zero

everywhere is pseudo-convex. Hence, in Slater’s condition,
the convexity of hj can be replaced with the following
assumption :

hj is quasi-convex with ∇hj(x) 6= 0 for all x ∈ U.
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KKT necessary conditions

As a consequence of the previous two theorems one gets the
following theorem.

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.
Let x∗ ∈ U be a solution of problem (I).
Assume that one of the following three conditions is satisfied.

1 If hj is linear or affine for all j = 1, ...,m.
2 Slater’s condition.
3 Rank condition.

Then, there exists µ∗ = (µ∗1, ..., µ
∗
j , ..., µ

∗
m) ∈ Rm

+ such that
(x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions associated with
problem (I).
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KKT sufficient conditions

Let U be an open and convex subset of Rn.

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.

If there exists µ∗ = (µ∗1, ..., µ
∗
j , ..., µ

∗
m) ∈ Rm

+ such that
(x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions associated with
problem (I), and the following condition (C) holds true, then x∗

is a solution of problem (I).

Condition (C) : The function L(x) = f (x)−
∑m

j=1 µ
∗
j hj(x) is

concave in x.

14



Let U be an open and convex subset of Rn. Assume that f and
h1, . . . ,hj , . . . ,hm are C1 on U.

Proposition
The previous theorem still holds true if Condition (C) is
replaced by one of the following two conditions.

1 The objective function f is concave and the constraint
functions hj are quasi-convex for all j = 1, ...,m.

2 The objective function f is quasi-concave with ∇f (x) 6= 0
for all x ∈ U, and the constraint functions hj are
quasi-convex for all j = 1, ...,m.

Hence, in order to check if KKT conditions are sufficient to
solve problem (I), we have to verify also some properties of
the objective function f .
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Sketch of the proof

Without loss of generality, f is pseudo-concave on U.

Assume that there exists µ∗ = (µ∗1, ..., µ
∗
j , ..., µ

∗
m) ∈ Rm

+ such that
(x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions associated with
problem (I).

If ∇f (x∗) = 0, then f (x) ≤ f (x∗) for all x ∈ U (because U is
open and f is pseudo-concave on U). Hence, f (x) ≤ f (x∗) for
all x ∈ U such that hj(x) ≤ 0 for all j = 1, ...,m. Further,
hj(x∗) ≤ 0 for all j = 1, ...,m. Then, x∗ solves problem (I).

Assume now that ∇f (x∗) 6= 0.

By contradiction, if x∗ is not a solution of problem (I), then
there is x ∈ U, x 6= x∗, such that hj(x) ≤ 0 for all j = 1, ...,m,
and f (x) > f (x∗). By pseudo-concavity of f , one gets :

∇f (x∗) · (x − x∗) > 0.
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Since hj is quasi-convex and hj(x) ≤ 0 = hj(x∗) for all j ∈ J(x∗),
we have that ∇hj(x∗) · (x − x∗) ≤ 0 for all j ∈ J(x∗). Then, we
get µ∗j ∇hj(x∗) · (x − x∗) ≤ 0 for all j ∈ J(x∗), because µ∗j ≥ 0.

If j /∈ J(x∗), then µ∗j = 0, because of complementary slackness.

Hence, we get :

µ∗j ∇hj(x∗) · (x − x∗) ≤ 0, ∀j = 1, ...,m.

Summing over j = 1, ...,m, we have :

m∑
j=1

µ∗j ∇hj(x∗) · (x − x∗) < ∇f (x∗) · (x − x∗).

That is impossible, because
∑m

j=1 µ
∗
j ∇hj(x∗) = ∇f (x∗). We

then conclude that x∗ must be a solution of problem (I).
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(Useful) Mathematical digressions

Farkas’ Lemma is a consequence of one of the Separation
Theorems, and it is often used in mathematical programming.

Let A = {a1, ...,aj , ...,am} be a set of m points of Rn.

K (A) denotes the set of all linear combinations of elements of A
with positive coefficients :

K (A) =

z =
m∑

j=1

µjaj ∈ Rn : µj ≥ 0 and aj ∈ A, ∀j = 1, ...,m

 .

That is, K (A) is the smallest (in the sense of inclusion) convex
cone of vertex 0 generated by a1, ...,aj , ...,am.
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Theorem (Farkas’ Lemma)

Let A = {a1, ...,aj , ...,am} be a set of m points of Rn. Consider
any point b ∈ Rn.

Then, only one of the following two alternatives holds true.

1 There exists µ = (µ1, ..., µj , ..., µm) ∈ Rm
+ such that :

b =
m∑

j=1

µjaj .

2 There exists p ∈ Rn with p 6= 0 such that :

p · b > 0 and p · aj ≤ 0, ∀ j = 1, ...,m.
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Let U be an open and convex subset of Rn, f is a C1 on C.

Definition (Pseudo-concavity)
f is pseudo-concave on U if for all x and x in U with x 6= x ,

f (x) > f (x) =⇒ ∇f (x) · (x − x) > 0

A function g is pseudo-convex on U if and only if the function
f = −g is pseudo-concave on U.

Proposition
1 If f is concave on U, then f is pseudo-concave on U.
2 If f is quasi-concave on U and ∇f (x) 6= 0 for all x ∈ U,

then f is pseudo-concave on U.
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