OPTIMIZATION A

Week 2: Thursday, November 7, 2024

Elena del Mercato




@ Inequality constraints
@ Karush-Kuhn-Tucker (KKT) conditions

@ KKT necessary conditions

@ KKT sufficient conditions




Inequality constraints

Let U be an open subset of R”. The functions f and
hy,... hj,..., hy are defined on U.

We study the maximization problem (Z) with the following
inequality constraints (i.e., < 0).

{ max f(x)
(I) xeU )
hi(x)<0,j=1,....m

The adaptation of the following study to minimization problems
of a function g or optimization problems with inequality
constraints described by the inequality g;(x) > 0 is left to the
reader, by remarking that :

@ ming(x) = max f(x), with f(x) = —g(x).

@ gj(x) > 0if and only if h;(x) < 0, with hj(x) = —g;(x).



Binding constraints

Let x* € U, we say that the constraint j is binding at x* if
hj(x*) = 0. We denote :

@ J(x*) the set of all binding constraints at x*, that is :
J(x*):={j=1,..,m: h(x*) =0},

@ m* < mthe number of elements of J(x*), and
Q h* := (hj)jeyx+) the following mapping :

h*:x € UCR" — h*(x) = (h(X))jeuix) € R™




Karush-Kuhn-Tucker (KKT) conditions

From nowon,fandh17...,hj,...,hmareC1 on U.

KKT conditions associated with the maximization problem (Z) :

VH(x) = > 1V hi(x),
(KKT)q Vj=1,...,m, u € Ry and hj(x) <0,
Vj=1,...,m, ujhi(x) = 0 (complementary slackness).

That is, at x :

1) The gradient of the objective function is a linear combination
of the gradients of the constraint functions, with positive
coefficients p; > 0.

2) All the constraints are satisfied.

3) If 4; > 0, then the constraint j is binding at x. If x belongs to
the interior of constraint j, i.e., hj(x) < 0, then p; = 0.



Linearized problem

Let x* € U be a solution of problem (Z).

The main idea to prove that KKT conditions are necessary to
solve problem (Z) is to replace problem (Z) with the linearized
problem (L£*) :

{ max VF(x*) - (x — x*)
(ﬁ* XERN ]
Vhi(x*) - (x = x*) <0, j e J(x*)

Notice that, in problem (£*), what really matters is the use of
the binding constraints at x*.




Generalized constraint qualification condition

Definition

Let x* € U be a solution of problem (Z) such that h;(x*) = 0 for
all j € J(x*). The generalized constraint qualification (GCQ)
condition is satisfied at x* if x* is also a solution of problem
(£7).

Remark that condition GCQ is not always satisfied.

One can easily find examples where x* € Sol(Z), but
x* ¢ Sol(L*).




Existence of Lagrange multipliers

Theorem
Assume that f and hy, ... h;,... hy areC' on U.

If x* € U is a solution of problem (Z) and x* satisfies condition
GCQ, then there exists p* = (u3, ..., T wh) € R such that
the vector (x*, i*) € U x R satisfies the KKT conditions
associated with problem (Z).




Sketch of the proof

If Vi(x*) =0, take pf =Oforall j=1,....,m.

Assume now that Vf(x*) # 0. Since x* solves problem (L£*),
there is no x # x* such that :

VI(x*) - (x —x*) >0 = VF(x*) (x* —x%),

and
Vhi(x*)-(x —x*) <0, Vj € J(x¥).

Take b = Vf(x*), and & = Vh;(x*) for all j € J(x*).




By Farkas’ Lemma, there exists p* = (M]’.‘)/-GJ(X*) € RT" such

that :
= Y ud

jed(x*)

For all j ¢ J(x*), take if = 0.

By construction, we get u}*hj(x*) =0forallj=1,....m,and
m
=D wVh(x*)
Jj=1

Further, hj(x*) <O0forallj=1,...,m, because x* is a solution
of problem (7).

Hence, (x*, u*) satisfies the KKT conditions associated with
problem (7). m



Sufficient conditions for generalized constraint

qualification

Assume that f and hy, ..., h;,... hy areC' on U.
QIf h; is linear or affine for all j = 1, ..., m, then condition
GCAQ is satisfied.

@ (Slater’s condition) Assume that U is also convex and :

e the constraint functions h; is convex for all j =1,...,m,
o there exists x € U such that hj(x) < 0 forallj=1,...,m.

Then, condition GCQ is satisfied.

© (Rank condition) I all the gradients (V hj(x*));cy(x) are
linearly independent, i.e., the rank of the Jacobian matrix
Dh*(x*) is equal to m* (full row rank), then condition GCQ

is satisfied.




Two remarks

Remark 1 In the Rank condition, one easily recognizes the
classical constraint qualification condition given for optimization
problems with equality constraints.

Remark 2 In Slater’s condition, the convexity of h; can be
weakened by another assumption, that is, h; is
“pseudo-convex”.

It is well know that :

@ A ' convex function is pseudo-convex.

@ A ' quasi-convex function with gradient different from zero
everywhere is pseudo-convex. Hence, in Slater’s condition,
the convexity of h; can be replaced with the following
assumption :

e hjis quasi-convex with Vh;(x) # 0 for all x € U.



KKT necessary conditions

As a consequence of the previous two theorems one gets the
following theorem.

Theorem

Assume that f and hy, ..., h;, ..., hy areC' on U.
Let x* € U be a solution of problem ().
Assume that one of the following three conditions is satisfied.

Q /fh; is linear or affine for allj =1, ..., m.
@ Slater’s condition.
© Rank condition.

Then, there exists * = (p3, ..., s e wh) € R such that
(x*, ") € U x R satisfies the KKT conditions associated with
problem (Z).




KKT sufficient conditions

Let U be an open and convex subset of R”".

Theorem

Assume that f and hy,...  h;, ..., hy areC' on U.

If there exists p* = (u3, ..., 1, .-, i) € R such that

(x*, ") € U x R satisfies the KKT conditions associated with
problem (Z), and the following condition (C) holds true, then x*
is a solution of problem (T).

Condition (C) : The function L(x) = f(x) — Zj”; 1 hi(x) is
concave in Xx.




Let U be an open and convex subset of R”. Assume that f and
hi,....hj,...,hmare C' on U.

Proposition
The previous theorem still holds true if Condition (C) is
replaced by one of the following two conditions.
@ The objective function f is concave and the constraint
functions h; are quasi-convex for allj =1,...,m.
@ The objective function f is quasi-concave with Vf(x) # 0
for all x € U, and the constraint functions h; are
quasi-convex forall j=1,...,m.

Hence, in order to check if KKT conditions are sufficient to
solve problem (Z), we have to verify also some properties of
the objective function f.



Sketch of the proof

Without loss of generality, f is pseudo-concave on U.

Assume that there exists p* = (1], e B s i) € R such that
(x*, 1) € U x RT satisfies the KKT conditions associated with
problem (7).

If Vf(x*) =0, then f(x) < f(x*) for all x € U (because U is
open and f is pseudo-concave on U). Hence, f(x) < f(x*) for
all x € U such that hj(x) < O0forallj = 1,...,m. Further,
hi(x*) < 0Oforallj=1,...,m. Then, x* solves problem (Z).

Assume now that Vf(x*) # 0.

By contradiction, if x* is not a solution of problem (Z), then
there is x € U, x # x*, such that hj(x) < Oforallj=1,...,m,
and f(x) > f(x*). By pseudo-concavity of f, one gets :

VIi(x*) - (x — x*) > 0.



Since h; is quasi-convex and h;(x) < 0 = h;(x*) for all j € J(x*),
we have that Vh;(x*) - (x — x*) < 0 for all j € J(x*). Then, we
get uj Vhi(x*) - (x — x*) < 0forall j € J(x*), because nif > 0.

Ifj ¢ J(x*), then nj = 0, because of complementary slackness.

Hence, we get :
pi Vhi(x*) - (x = x*) <0, Vj=1,

Summing over j =1, ..., m, we have :
m
D wIVh(x*) - (x = x*) < VI(X*) - (x = x7).
j=1

That is impossible, because > 1if Vh;(x*) = VF(x*). We
then conclude that x* must be a solution of problem (Z). m



(Useful) Mathematical digressions

Farkas’ Lemma is a consequence of one of the Separation
Theorems, and it is often used in mathematical programming.

Let A={a',....d,...,am} be a set of m points of R”.

K(A) denotes the set of all linear combinations of elements of A
with positive coefficients :

m
K(A) = {ZZ/L]‘aIERn: pj>0and @ € A, Vj = 1,...,m}.
=

That is, K(A) is the smallest (in the sense of inclusion) convex
cone of vertex 0 generated by a', ..., &, ...,a™.



Theorem (Farkas’ Lemma)

LetA={a', ... d,.. a"} be asetof m points of R". Consider
any point b € R".

Then, only one of the following two alternatives holds true.

Q There exists ju = (1, .., f1j, -, km) € R such that :
m .
b= Z,uja’.
j=1

@ There exists p € R" with p # 0 such that :

p-b>0and p-a<0,Vj=1,..,m




Let U be an open and convex subset of R”, fisaC' on C.

Definition (Pseudo-concavity)
f is pseudo-concave on U if for all x and X in U with x # X,

f(x) > f(x) = VI(X)-(x —Xx) >0

A function g is pseudo-convex on U if and only if the function
f = —g is pseudo-concave on U.

Proposition

@ Iffis concave on U, then f is pseudo-concave on U.

@ Iff is quasi-concave on U and Vf(x) # 0 for all x € U,
then f is pseudo-concave on U.




