OPTIMIZATION A Week 3: Thursday, November 14, and Monday, November 18, 2024

Elena del Mercato

- Mixed constraints
- KKT necessary and sufficient conditions with mixed constraints
- Comparative statics and the Envelope Theorems

프 > 프

(日)

Let *U* be an **open** subset of \mathbb{R}^n . From now on, the functions *f*, $g_1, \ldots, g_i, \ldots, g_p$, and $h_1, \ldots, h_j, \ldots, h_m$ are \mathcal{C}^1 on *U*.

We consider the following maximization problem (\mathcal{M}) that includes both **equality and inequality constraints**.

$$(\mathcal{M}) \left\{ egin{array}{l} \max_{x \in \mathcal{U}} f(x) \ g_i(x) = 0, \, orall i = 1, \dots p \ h_j(x) \leq 0, \, j = 1, \dots, m \end{array}
ight.$$

Consider $x^* \in U$, as in the previous section, $J(x^*) = \{j = 1, ..., m : h_j(x^*) = 0\}, m^*$ is the number of elements of $J(x^*)$, and $h^* = (h_j)_{j \in J(x^*)}$.

Also define the mapping $g = (g_i)_{i=1,...,p}$ from U to \mathbb{R}^p .

KKT conditions with mixed constraints

The Karush-Kuhn-Tucker (KKT) conditions associated with the maximization problem (\mathcal{M}) are :

$$(KKT) \begin{cases} \nabla f(x) = \sum_{i=1}^{p} \lambda_i \nabla g_i(x) + \sum_{j=1}^{m} \mu_j \nabla h_j(x), \\ \forall i = 1, ..., p, g_i(x) = 0, \\ \forall j = 1, ..., m, \mu_j \in \mathbb{R}_+ \text{ and } h_j(x) \le 0, \\ \forall j = 1, ..., m, \mu_j h_j(x) = 0 \text{ (complementary slackness).} \end{cases}$$

 $\lambda = (\lambda_i)_{i=1,...,p} \in \mathbb{R}^p$ is the bundle of Lagrange multipliers associated with equality constraints, $\mu = (\mu_j)_{j=1,...,m} \in \mathbb{R}^m_+$ is the bundle of Lagrange multipliers associated with inequality constraints.

Notice that λ_i is not required to be positive. This is not surprising, because an equality constraint can be written as two inequality constraints.

ヘロン ヘアン ヘビン ヘビン

KKT necessary conditions with mixed constraints

As a consequence of the results of the previous section, one gets the following theorems.

Theorem

Let $x^* \in U$ be a solution of problem (\mathcal{M}) . Assume that **one** of the following two conditions is satisfied.

- The functions g_i and h_j are linear or affine for all i = 1, ..., p and all j = 1, ..., m.
- **2** (Rank condition) All the gradients $(\nabla g_i(x^*))_{i=1,...,p}$ and $(\nabla h_j(x^*))_{j\in J(x^*)}$ are linearly independent. That is, $\operatorname{rank} \begin{bmatrix} Dg(x^*) \\ Dh^*(x^*) \end{bmatrix} = p + m^*.$ Then, there exist $\lambda^* = (\lambda_i^*)_{i=1,...,p} \in \mathbb{R}^p$ and $\mu^* = (\mu_j^*)_{j=1,...,m} \in \mathbb{R}^m_+$ such that (x^*, λ^*, μ^*) satisfies the KKT

Now *U* is an open and **convex** subset of \mathbb{R}^n . We remind that the functions $f, g_1, \ldots, g_j, \ldots, g_p, h_1, \ldots, h_j, \ldots, h_m$ are \mathcal{C}^1 on *U*.

Theorem

If there exist $\lambda^* = (\lambda_i^*)_{i=1,...,p} \in \mathbb{R}^p$ and $\mu^* = (\mu_j^*)_{j=1,...,m} \in \mathbb{R}^m_+$ such that $(x^*, \lambda^*, \mu^*) \in U \times \mathbb{R}^p \times \mathbb{R}^m_+$ satisfies the KKT conditions associated with problem (\mathcal{M}) , and and the following condition (G) holds true, then x^* is a solution of problem (\mathcal{M}) .

Condition (G) : The function $\mathcal{L}(x) = f(x) - \sum_{i=1}^{p} \lambda^* g_i(x) - \sum_{j=1}^{m} \mu_j^* h_j(x)$ is concave in *x*.

Proposition

The previous theorem still holds true if **Condition (G)** is replaced by **one** of the following two conditions.

- The objective function f is concave, the functions g_i are linear or affine for all i = 1, ..., p, the functions h_j are quasi-convex for all j = 1, ..., m.
- 2 The objective function f is quasi-concave with ∇f(x) ≠ 0 for all x ∈ U, the functions g_i are linear or affine for all i = 1, ..., p, the functions h_j are quasi-convex for all j = 1, ..., m.

We now consider the following parameterized maximization problem with **equality constraints**.

Problem (\mathcal{P}_r) depends on some parameters $r = (r_1, ..., r_k, ..., r_\ell) \in \mathbb{R}^\ell$, because the value of the objective function and the values of the constraint functions may depend on some parameters *r*.

$$(\mathcal{P}_r) \begin{cases} \max_{x \in U} f(x, r) \\ g_i(x, r) = 0, i = 1, \dots, p \end{cases}$$

We denote by v(r) the value of problem (\mathcal{P}_r). That is, v(r) is the value of the objective function *f* at a solution of problem (\mathcal{P}_r).

Let $\bar{r} = (\bar{r}_1, ..., \bar{r}_k, ..., \bar{r}_\ell) \in \mathbb{R}^\ell$ some reference parameters.

We assume that $v(\cdot)$ is well-defined around \overline{r} , that is, in some open ball $B \subseteq \mathbb{R}^{\ell}$ of center \overline{r} .

For all $r \in B$, the value function is then defined as :

$$v(r) = \max\{f(x, r) \colon x \in C(r)\},\$$

where $C(r) = \{x \in U : g_i(x, r) = 0, \forall i = 1, ..., p\}$ is the set determined by the constraint functions of problem (\mathcal{P}_r) .

We are interested in studying the **marginal effects of changes** in *r* on the value function *v*.

イロト イポト イヨト イヨト

We make the following assumption.

Assumption (A). There exist C^1 mappings $x(\cdot)$ and $\lambda(\cdot)$ defined in the open neighborhood B of \overline{r} , i.e.,

$$x : r \in B \rightarrow x(r) = (x_1(r), ..., x_n(r)) \in \mathbb{R}^n$$
, and
 $\lambda : r \in B \rightarrow \lambda(r) = (\lambda_1(r), ..., \lambda_p(r)) \in \mathbb{R}^p$

such that for all $r \in B$:

• x(r) is the unique solution of problem (\mathcal{P}_r), and

Remark

Notice that Assumption (A) is an assumption on **endogenous** variables. i.e., $x \in U$ and $\lambda \in \mathbb{R}^{p}$.

Nevertheless, Assumption (A) can be obtained as a consequence of the Implicit Function Theorem.

Indeed, one can determine appropriate assumptions on the objective function *f* and on the constraints function g_i in such a way that one applies the Implicit Function Theorem to the system of equations $F(x, \lambda, r) = 0$, where the mapping *F* is given by :

$$F: (x, \lambda, r) \in U \times \mathbb{R}^p \times B \rightarrow F(x, \lambda, r) \in \mathbb{R}^n \times \mathbb{R}^p,$$

with $F(x, \lambda, r) = (D(x, \lambda, r), G(x, \lambda, r))$ and

$$\begin{cases} D(x,\lambda,r) = \nabla_x f(x,r) - \sum_{i=1}^{p} \lambda_i \nabla_x g_i(x,r) \\ G(x,\lambda,r) = (g_1(x,r),...,g_i(x,r),...,g_p(x,r)) \end{cases}$$

ヘロト 人間 ト ヘヨト ヘヨト

For every $r \in B$, we have then v(r) = f(x(r), r).

Under Assumption (A), one gets the following **Envelope Theorem** by using the chain rule.

Theorem

Assume that the objective function f and the constraint functions $g_1, \ldots, g_i, \ldots, g_p$ are C^2 on U. If Assumption (A) is satisfied, then $\nabla_r v(\bar{r}) = \nabla_r f(x(\bar{r}), \bar{r}) - \sum_{i=1}^p \lambda_i(\bar{r}) \nabla_r g_i(x(\bar{r}), \bar{r})$.

That is, for all $k = 1, ..., \ell$:

$$\frac{\partial \mathbf{v}}{\partial \mathbf{r}_k}(\bar{\mathbf{r}}) = \frac{\partial f}{\partial \mathbf{r}_k}(\mathbf{x}(\bar{\mathbf{r}}), \bar{\mathbf{r}}) - \sum_{i=1}^p \lambda_i(\bar{\mathbf{r}}) \frac{\partial g_i}{\partial \mathbf{r}_k}(\mathbf{x}(\bar{\mathbf{r}}), \bar{\mathbf{r}}).$$

Remark 1.

In the **unconstrained** case (i.e., no constraints at all), we have that :

$$\nabla_r \mathbf{v}(\bar{\mathbf{r}}) = \nabla_r f(\mathbf{x}(\bar{\mathbf{r}}), \bar{\mathbf{r}})$$

Remark 2.

If the number of parameters ℓ is equal to the number of equality constraints p, i.e., $r = (r_1, ..., r_i, ..., r_p) \in \mathbb{R}^p$, f **does not depend on the parameter** r, i.e., f(x), and for all i = 1, ..., p:

$$g_i(x,r)=\gamma_i(x)-r_i,$$

one gets :

$$\nabla_r \mathbf{v}(\bar{\mathbf{r}}) = \lambda(\bar{\mathbf{r}})$$

The previous analysis can be extended to the case of inequality constraints.

Consider $r = (r_1, ..., r_k, ..., r_\ell) \in \mathbb{R}^\ell$ and the following maximization problem (\mathcal{I}_r) .

$$(\mathcal{I}_r) \begin{cases} \max_{x \in U} f(x, r) \\ h_j(x, r) \leq 0, j = 1, \dots, m \end{cases}$$

We write the Karush-Kuhn-Tucker conditions associated with problem (\mathcal{I}_r).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

$$(KKT)_r \begin{cases} 1 \nabla_x f(x,r) = \sum_{j=1}^m \mu_j \nabla_x h_j(x,r), \\ 2 \forall j = 1, ..., m, \ \mu_j \ge 0, \ h_j(x,r) \le 0 \ and \ \mu_j h_j(x,r) = 0 \end{cases}$$

For all j = 1, ..., m, the conditions in Item 2) translate in the equation :

$$\min\{\mu_j, -h_j(x, r)\} = 0.$$

Notice that the function $\min\{\mu_j, -h_j(x, r)\}$ is not differentiable everywhere.

This is because if x is on the boundary of constraint j, the changes in parameters r can cause x to jump from the boundary to the interior of constraint j.

イロト イポト イヨト イヨト

Hence in the case of inequality constraints, Assumption (A) must be adapted as follows.

Assumption (B). There exist C^1 mappings $x(\cdot)$ and $\mu(\cdot)$ defined in an open neighborhood W of \overline{r} such that for all $r \in W$:

• x(r) is the unique solution of problem (\mathcal{I}_r) ,

2
$$h_j(x(r), r) = 0$$
 for all $j \in J(x(\overline{r}))$ and $h_j(x(r), r) < 0$ for all $j \notin J(x(\overline{r}))$,

3)
$$\mu_j(r) > 0$$
 for all $j \in J(x(\overline{r}))$ and $\mu_j(r) = 0$ for all $j \notin J(x(\overline{r}))$.

For all $r \in W$, the **value function** of problem (\mathcal{P}_r) is then defined as :

 $v(r) = \max\{f(x, r) : h_j(x, r) \le 0, \forall i = 1, ..., m\} = f(x(r), r)$

Under Assumption (B) one gets the same result as the previous Envelope Theorem.

Theorem

Assume that the objective function f and the constraint functions $h_1, \ldots, h_j, \ldots, h_m$ are C^2 on U. If Assumption (B) is satisfied, then

$$\nabla_r \mathbf{v}(\bar{r}) = \nabla_r f(\mathbf{x}(\bar{r}), \bar{r}) - \sum_{j \in J(\mathbf{x}(\bar{r}))} \mu_j(\bar{r}) \nabla_r h_j(\mathbf{x}(\bar{r}), \bar{r})$$