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Mixed constraints

Let U be an open subset of Rn. From now on, the functions f ,
g1, . . . ,gi , . . . ,gp, and h1, . . . ,hj , . . . ,hm are C1 on U.

We consider the following maximization problem (M) that
includes both equality and inequality constraints.

(M)


max
x∈U

f (x)

gi(x) = 0, ∀i = 1, . . .p
hj(x) ≤ 0, j = 1, . . . ,m

Consider x∗ ∈ U, as in the previous section,
J(x∗) = {j = 1, ...,m : hj(x∗) = 0}, m∗ is the number of
elements of J(x∗), and h∗ = (hj)j∈J(x∗).

Also define the mapping g = (gi)i=1,...,p from U to Rp.
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KKT conditions with mixed constraints

The Karush-Kuhn-Tucker (KKT) conditions associated with the
maximization problem (M) are :

(KKT )


∇f (x) =

∑p
i=1 λi∇gi(x) +

∑m
j=1 µj∇hj(x),

∀i = 1, ...,p, gi(x) = 0,
∀j = 1, ...,m, µj ∈ R+ and hj(x) ≤ 0,
∀j = 1, ...,m, µjhj(x) = 0 (complementary slackness).

λ = (λi)i=1,...,p ∈ Rp is the bundle of Lagrange multipliers
associated with equality constraints, µ = (µj)j=1,...,m ∈ Rm

+ is the
bundle of Lagrange multipliers associated with inequality
constraints.

Notice that λi is not required to be positive. This is not
surprising, because an equality constraint can be written as two
inequality constraints.
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KKT necessary conditions with mixed constraints

As a consequence of the results of the previous section, one
gets the following theorems.

Theorem
Let x∗ ∈ U be a solution of problem (M).
Assume that one of the following two conditions is satisfied.

1 The functions gi and hj are linear or affine for all
i = 1, ...,p and all j = 1, ...,m.

2 (Rank condition) All the gradients (∇gi(x∗))i=1,...,p and
(∇hj(x∗))j∈J(x∗) are linearly independent. That is,

rank
[

Dg(x∗)
Dh∗(x∗)

]
= p + m∗.

Then, there exist λ∗ = (λ∗i )i=1,...,p ∈ Rp and
µ∗ = (µ∗j )j=1,...,m ∈ Rm

+ such that (x∗, λ∗, µ∗) satisfies the KKT
conditions associated with problem (M).

5



KKT sufficient conditions with mixed constraints

Now U is an open and convex subset of Rn. We remind that
the functions f , g1, . . . ,gi , . . . ,gp, h1, . . . ,hj , . . . ,hm are C1 on U.

Theorem
If there exist λ∗ = (λ∗i )i=1,...,p ∈ Rp and µ∗ = (µ∗j )j=1,...,m ∈ Rm

+

such that (x∗, λ∗, µ∗) ∈ U × Rp × Rm
+ satisfies the KKT

conditions associated with problem (M), and and the following
condition (G) holds true, then x∗ is a solution of problem (M).

Condition (G) : The function
L(x) = f (x)−

∑p
i=1 λ

∗gi(x)−
∑m

j=1 µ
∗
j hj(x)

is concave in x.
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Proposition
The previous theorem still holds true if Condition (G) is
replaced by one of the following two conditions.

1 The objective function f is concave, the functions gi are
linear or affine for all i = 1, ...,p, the functions hj are
quasi-convex for all j = 1, ...,m.

2 The objective function f is quasi-concave with ∇f (x) 6= 0
for all x ∈ U, the functions gi are linear or affine for all
i = 1, ...,p, the functions hj are quasi-convex for all
j = 1, ...,m.
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Parameterized optimization problems

We now consider the following parameterized maximization
problem with equality constraints.

Problem (Pr ) depends on some parameters
r = (r1, ..., rk , ..., r`) ∈ R`, because the value of the objective
function and the values of the constraint functions may depend
on some parameters r .

(Pr )

{
max
x∈U

f (x , r)

gi(x , r) = 0, i = 1, . . . ,p

We denote by v(r) the value of problem (Pr ). That is, v(r) is the
value of the objective function f at a solution of problem (Pr ).
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Value function

Let r̄ = (r̄1, ..., r̄k , ..., r̄`) ∈ R` some reference parameters.

We assume that v(·) is well-defined around r̄ , that is, in some
open ball B ⊆ R` of center r̄ .

For all r ∈ B, the value function is then defined as :

v(r) = max{f (x , r) : x ∈ C(r)},

where C(r) = {x ∈ U : gi(x , r) = 0, ∀i = 1, . . . ,p} is the set
determined by the constraint functions of problem (Pr ).

We are interested in studying the marginal effects of changes
in r on the value function v .
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Assumption

We make the following assumption.

Assumption (A). There exist C1 mappings x(·) and λ(·)
defined in the open neighborhood B of r̄ , i.e.,

x : r ∈ B → x(r) = (x1(r), ..., xn(r)) ∈ Rn, and
λ : r ∈ B → λ(r) = (λ1(r), ..., λp(r)) ∈ Rp

such that for all r ∈ B :
1 x(r) is the unique solution of problem (Pr ), and

2 ∇x f (x(r), r)−
∑p

i=1 λi(r)∇xgi(x(r), r) = 0.
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Remark

Notice that Assumption (A) is an assumption on endogenous
variables. i.e., x ∈ U and λ ∈ Rp.

Nevertheless, Assumption (A) can be obtained as a
consequence of the Implicit Function Theorem.

Indeed, one can determine appropriate assumptions on the
objective function f and on the constraints function gi in such a
way that one applies the Implicit Function Theorem to the
system of equations F (x , λ, r) = 0, where the mapping F is
given by :

F : (x , λ, r) ∈ U × Rp × B → F (x , λ, r) ∈ Rn × Rp,

with F (x , λ, r) = (D(x , λ, r),G(x , λ, r)) and{
D(x , λ, r) = ∇x f (x , r)−

∑p
i=1 λi∇xgi(x , r)

G(x , λ, r) = (g1(x , r), ...,gi(x , r), ...,gp(x , r))
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The Envelope Theorem

For every r ∈ B, we have then v(r) = f (x(r), r).

Under Assumption (A), one gets the following Envelope
Theorem by using the chain rule.

Theorem
Assume that the objective function f and the constraint
functions g1, . . . ,gi , . . . ,gp are C2 on U. If Assumption (A) is
satisfied, then ∇r v(r̄) = ∇r f (x(r̄), r̄)−

∑p
i=1 λi(r̄)∇r gi(x(r̄), r̄).

That is, for all k = 1, ..., ` :

∂v
∂rk

(r̄) =
∂f
∂rk

(x(r̄), r̄)−
∑p

i=1 λi(r̄)
∂gi

∂rk
(x(r̄), r̄).

12



Some remarks on the Envelope Theorem

Remark 1.

In the unconstrained case (i.e., no constraints at all), we have
that :

∇r v(r̄) = ∇r f (x(r̄), r̄)

Remark 2.

If the number of parameters ` is equal to the number of equality
constraints p, i.e., r = (r1, ..., ri , ..., rp) ∈ Rp, f does not depend
on the parameter r , i.e., f (x), and for all i = 1, ...,p :

gi(x , r) = γi(x)− ri ,

one gets :
∇r v(r̄) = λ(r̄)
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Parameterized problems with inequality constraints

The previous analysis can be extended to the case of inequality
constraints.

Consider r = (r1, ..., rk , ..., r`) ∈ R` and the following
maximization problem (Ir ).

(Ir )

{
max
x∈U

f (x , r)

hj(x , r) ≤ 0, j = 1, . . . ,m

We write the Karush-Kuhn-Tucker conditions associated with
problem (Ir ).
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(KKT )r

{
1) ∇x f (x , r) =

∑m
j=1 µj∇xhj(x , r),

2) ∀j = 1, ...,m, µj ≥ 0, hj(x , r) ≤ 0 and µjhj(x , r) = 0

For all j = 1, ...,m, the conditions in Item 2) translate in the
equation :

min{µj ,−hj(x , r)} = 0.

Notice that the function min{µj ,−hj(x , r)} is not differentiable
everywhere.

This is because if x is on the boundary of constraint j , the
changes in parameters r can cause x to jump from the
boundary to the interior of constraint j .
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Hence in the case of inequality constraints, Assumption (A)
must be adapted as follows.

Assumption (B). There exist C1 mappings x(·) and µ(·) defined
in an open neighborhood W of r̄ such that for all r ∈W :

1 x(r) is the unique solution of problem (Ir ),

2 hj(x(r), r) = 0 for all j ∈ J(x(r̄)) and hj(x(r), r) < 0 for all
j /∈ J(x(r̄)),

3 ∇x f (x(r), r)−
∑

j∈J(x(r̄))

µj(r)∇xhj(x(r), r) = 0,

4 µj(r) > 0 for all j ∈ J(x(r̄)) and µj(r) = 0 for all j /∈ J(x(r̄)).
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For all r ∈W , the value function of problem (Pr ) is then
defined as :

v(r) = max{f (x , r) : hj(x , r) ≤ 0, ∀i = 1, . . . ,m} = f (x(r), r)

Under Assumption (B) one gets the same result as the previous
Envelope Theorem.

Theorem
Assume that the objective function f and the constraint
functions h1, . . . ,hj , . . . ,hm are C2 on U. If Assumption (B) is
satisfied, then

∇r v(r̄) = ∇r f (x(r̄), r̄)−
∑

j∈J(x(r̄))

µj(r̄)∇r hj(x(r̄), r̄).
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