OPTIMIZATION A Week 3: Thursday, November 14, and Monday, November 18, 2024

Elena del Mercato

 290

€

- Mixed constraints
- KKT necessary and sufficient conditions with mixed constraints
- **Comparative statics and the Envelope Theorems**

メスラメスラメ

← ロ ▶ → 伊

÷. QQ Let U be an **open** subset of \mathbb{R}^n . From now on, the functions f, $g_1,\ldots,g_i,\ldots,g_p,$ and $h_1,\ldots,h_j,\ldots,h_m$ are \mathcal{C}^1 on $U.$

We consider the following maximization problem (M) that includes both **equality and inequality constraints**.

$$
(\mathcal{M})\left\{\begin{array}{l}\max_{x\in U}f(x)\\ g_i(x)=0,\,\forall i=1,\ldots,p\\ h_j(x)\leq 0,\,j=1,\ldots,m\end{array}\right.
$$

Consider $x^* \in U$, as in the previous section, $J(x^*) = \{j = 1, ..., m : h_j(x^*) = 0\}, m^*$ is the number of elements of $J(x^*)$, and $h^* = (h_j)_{j \in J(x^*)}$.

Also define the mapping $g = (g_i)_{i=1,\dots,p}$ from U to \mathbb{R}^p .

KKT conditions with mixed constraints

The Karush-Kuhn-Tucker (KKT) conditions associated with the maximization problem (M) are :

$$
(KKT) \left\{\begin{array}{l}\nabla f(x) = \sum_{i=1}^{p} \lambda_i \nabla g_i(x) + \sum_{j=1}^{m} \mu_j \nabla h_j(x),\\ \n\forall i = 1, ..., p, g_i(x) = 0,\\ \n\forall j = 1, ..., m, \mu_j \in \mathbb{R}_+ \text{ and } h_j(x) \leq 0,\\ \n\forall j = 1, ..., m, \mu_j h_j(x) = 0 \text{ (complementary slackness)}.\n\end{array}\right.
$$

 $\lambda = (\lambda_i)_{i=1,...,p} \in \mathbb{R}^p$ is the bundle of Lagrange multipliers associated with equality constraints, $\mu=(\mu_j)_{j=1,...,m}\in\mathbb{R}_+^m$ is the bundle of Lagrange multipliers associated with inequality constraints.

Notice that λ_i is not required to be positive. This is not surprising, because an equality constraint can be written as two inequality constraints.

イロト 不優 トメ 君 トメ 君 トー

 QQ

KKT necessary conditions with mixed constraints

As a consequence of the results of the previous section, one gets the following theorems.

Theorem

Let $x^* \in U$ *be a solution of problem* (M) *. Assume that one of the following two conditions is satisfied.*

- ¹ *The functions gⁱ and h^j are linear or affine for all* $i = 1, ..., p$ and all $j = 1, ..., m$.
- ² **(Rank condition)** *All the gradients* (∇*gi*(*x* ∗))*i*=1,...,*^p and* (∇*hj*(*x* ∗))*j*∈*J*(*^x* [∗]) *are linearly independent. That is,* rank $\begin{bmatrix} Dg(x^*) \\ Dg(x^*) \end{bmatrix}$ *Dh*[∗] (*x* ∗) $\Big] = p + m^*$.

Then, there exist $\lambda^* = (\lambda_i^*)_{i=1,\dots,p} \in \mathbb{R}^p$ and $\mu^* = (\mu_j^*)_{j=1,...,m} \in \mathbb{R}_+^m$ such that (x^*,λ^*,μ^*) satisfies the KKT *conditions associated with problem* (M)*.*

Now U is an open and **convex** subset of \mathbb{R}^n . We remind that the functions $f, g_1, \ldots, g_i, \ldots, g_p,$ $h_1, \ldots, h_j, \ldots, h_m$ are \mathcal{C}^1 on $U.$

Theorem

If there exist $\lambda^* = (\lambda_i^*)_{i=1,\dots,p} \in \mathbb{R}^p$ and $\mu^* = (\mu_j^*)_{j=1,\dots,m} \in \mathbb{R}^m_+$ $\mathsf{such}\; \mathsf{that}\; (\mathsf{x}^*, \lambda^*, \mu^*) \in \mathsf{U} \times \mathbb{R}^p \times \mathbb{R}^m_+$ satisfies the KKT *conditions associated with problem* (M)*, and and the following condition* (*G*) *holds true, then x*[∗] *is a solution of problem* (M)*.*

Condition (G) : The function $\mathcal{L}(x) = f(x) - \sum_{i=1}^{p} \lambda^* g_i(x) - \sum_{j=1}^{m} \mu^*_j h_j(x)$ *is concave in x.*

K ロ ⊁ K 個 ≯ K 差 ⊁ K

Proposition

The previous theorem still holds true if Condition (G) is replaced by one of the following two conditions.

- ¹ *The objective function f is concave, the functions gⁱ are linear or affine for all i* = 1, ..., *p*, the functions h_i are *guasi-convex for all* $j = 1, ..., m$ *.*
- 2 *The objective function f is quasi-concave with* $\nabla f(x) \neq 0$ *for all x* ∈ *U, the functions gⁱ are linear or affine for all* $i = 1, ..., p$, the functions h_i *are* **quasi-convex** for all $j = 1, ..., m$.

イロト イ押 トイヨ トイヨ トー

つへへ

We now consider the following parameterized maximization problem with **equality constraints**.

Problem (P*r*) depends on some parameters $\textit{r} = (r_1, ..., r_k, ..., r_\ell) \in \mathbb{R}^\ell$, because the value of the objective function and the values of the constraint functions may depend on some parameters *r*.

$$
(\mathcal{P}_r)\left\{\begin{array}{l}\max_{x\in U}f(x,r)\\g_i(x,r)=0,\,i=1,\ldots,p\end{array}\right.
$$

We denote by $v(r)$ the value of problem (\mathcal{P}_r) . That is, $v(r)$ is the value of the objective function f at a solution of problem (\mathcal{P}_r) .

Let $\bar{r} = (\bar{r}_1,...,\bar{r}_k,...,\bar{r}_\ell) \in \mathbb{R}^\ell$ some reference parameters.

We assume that $v(\cdot)$ is well-defined around \bar{r} , that is, in some open ball $B \subseteq \mathbb{R}^\ell$ of center $\bar{r}.$

For all $r \in B$, the **value function** is then defined as :

$$
v(r) = \max\{f(x,r): x \in C(r)\},\
$$

where $C(r) = \{x \in U : g_i(x, r) = 0, \forall i = 1, \ldots, p\}$ is the set determined by the constraint functions of problem (\mathcal{P}_r) .

We are interested in studying the **marginal effects of changes in** *r* **on the value function** *v*.

イロメ イ押 メイヨメ イヨメ

 Ω

We make the following assumption.

Assumption (A). There exist C^1 mappings $x(\cdot)$ and $\lambda(\cdot)$ *defined in the open neighborhood B of* ¯*r, i.e.,*

$$
x: r \in B \rightarrow x(r) = (x_1(r), ..., x_n(r)) \in \mathbb{R}^n, \text{ and}
$$

$$
\lambda: r \in B \rightarrow \lambda(r) = (\lambda_1(r), ..., \lambda_p(r)) \in \mathbb{R}^p
$$

such that for all $r \in B$ *:*

 \bullet *x*(*r*) *is the unique solution of problem* (P_r), and

$$
\bullet \ \nabla_x f(x(r),r) - \sum_{i=1}^p \lambda_i(r) \nabla_x g_i(x(r),r) = 0.
$$

K ロ ⊁ K 伊 ⊁ K ヨ ⊁

つくい

Remark

Notice that Assumption (A) is an assumption on **endogenous** variables. i.e., $x \in U$ and $\lambda \in \mathbb{R}^p$.

Nevertheless, Assumption (A) can be obtained as a consequence of the Implicit Function Theorem.

Indeed, one can determine appropriate assumptions on the objective function f and on the constraints function g_i in such a way that one applies the Implicit Function Theorem to the system of equations $F(x, \lambda, r) = 0$, where the mapping *F* is given by :

$$
F:(x,\lambda,r)\in U\times\mathbb{R}^p\times B\to F(x,\lambda,r)\in\mathbb{R}^n\times\mathbb{R}^p,
$$

with $F(x, \lambda, r) = (D(x, \lambda, r), G(x, \lambda, r))$ and

$$
\begin{cases}\nD(x, \lambda, r) = \nabla_x f(x, r) - \sum_{i=1}^p \lambda_i \nabla_x g_i(x, r) \\
G(x, \lambda, r) = (g_1(x, r), ..., g_i(x, r), ..., g_p(x, r))\n\end{cases}
$$

イロト イ団ト イヨト イヨト

 QQ

For every $r \in B$, we have then $v(r) = f(x(r), r)$.

Under Assumption (A), one gets the following **Envelope Theorem** by using the chain rule.

Theorem

Assume that the objective function f and the constraint functions $g_1, \ldots, g_i, \ldots, g_p$ are C^2 *on U. If Assumption (A) is satisfied, then* $\nabla_r v(\bar{r}) = \nabla_r f(x(\bar{r}), \bar{r}) - \sum_{i=1}^p \lambda_i(\bar{r}) \nabla_r g_i(x(\bar{r}), \bar{r})$ *.*

That is, for all $k = 1, ..., \ell$ *:*

$$
\frac{\partial V}{\partial r_k}(\bar{r}) = \frac{\partial f}{\partial r_k}(x(\bar{r}),\bar{r}) - \sum_{i=1}^p \lambda_i(\bar{r}) \frac{\partial g_i}{\partial r_k}(x(\bar{r}),\bar{r}).
$$

Remark 1.

In the unconstrained case (i.e., no constraints at all), we have that :

$$
\nabla_r v(\bar{r}) = \nabla_r f(x(\bar{r}), \bar{r})
$$

Remark 2.

If the number of parameters ℓ *is equal to the number of equality* $\mathit{constraints}$ $p, \, i.e., \, r = (r_1, ..., r_i, ..., r_p) \in \mathbb{R}^p, \, f$ does not depend *on the parameter r, i.e.,* $f(x)$ *, and for all i* = 1, ..., *p* :

$$
g_i(x,r)=\gamma_i(x)-r_i,
$$

one gets :

$$
\nabla_r \mathbf{v}(\bar{r}) = \lambda(\bar{r})
$$

 Ω

The previous analysis can be extended to the case of inequality constraints.

Consider $r = (r_1, ..., r_k, ..., r_\ell) \in \mathbb{R}^\ell$ and the following maximization problem (\mathcal{I}_r) .

$$
(\mathcal{I}_r)\begin{cases} \max_{x\in U} f(x,r) \\ h_j(x,r) \leq 0, j=1,\ldots,m \end{cases}
$$

We write the Karush-Kuhn-Tucker conditions associated with problem (\mathcal{I}_r) .

イロメ イ押 メイヨメ イヨメ

 QQ

$$
(KKT)_r \left\{ \begin{array}{ll} 1) \nabla_x f(x,r) = \sum_{j=1}^m \mu_j \nabla_x h_j(x,r), \\ 2) \forall j = 1,...,m, \mu_j \geq 0, h_j(x,r) \leq 0 \text{ and } \mu_j h_j(x,r) = 0 \end{array} \right.
$$

For all $j = 1, ..., m$, the conditions in Item 2) translate in the equation :

$$
\min\{\mu_j,-h_j(x,r)\}=0.
$$

Notice that the function $\min\{\mu_j,-h_j(\textit{\textbf{x}},\textit{\textbf{r}})\}$ is not differentiable everywhere.

This is because if *x* is on the boundary of constraint *j*, the changes in parameters *r* can cause *x* to jump from the boundary to the interior of constraint *j*.

イロメ イ伊 メイヨメ

つくい

Hence in the case of inequality constraints, Assumption (A) must be adapted as follows.

Assumption (B). There exist C ¹ *mappings x*(·) *and* µ(·) *defined in an open neighborhood W of* \bar{r} such that for all $r \in W$:

 \bullet *x*(*r*) *is the unique solution of problem* (\mathcal{I}_r) *,*

•
$$
h_j(x(r), r) = 0
$$
 for all $j \in J(x(\overline{r}))$ and $h_j(x(r), r) < 0$ for all $j \notin J(x(\overline{r})),$

$$
\bullet \ \nabla_x f(x(r),r) - \sum_{j \in J(x(\bar{r}))} \mu_j(r) \nabla_x h_j(x(r),r) = 0,
$$

 \bigoplus $\mu_i(r) > 0$ for all $j \in J(x(\overline{r}))$ and $\mu_i(r) = 0$ for all $j \notin J(x(\overline{r}))$.

 4 ロ } 4 6 } 4 3 } 4

For all $r \in W$, the **value function** of problem (\mathcal{P}_r) is then defined as :

 $v(r) = \max\{f(x, r): h_i(x, r) \leq 0, \forall i = 1, \ldots, m\} = f(x(r), r)$

Under Assumption (B) one gets the same result as the previous Envelope Theorem.

Theorem

Assume that the objective function f and the constraint functions $h_1, \ldots, h_j, \ldots, h_m$ *are* C^2 *on U. If Assumption (B) is satisfied, then*

$$
\nabla_r v(\bar{r}) = \nabla_r f(x(\bar{r}), \bar{r}) - \sum_{j \in J(x(\bar{r}))} \mu_j(\bar{r}) \nabla_r h_j(x(\bar{r}), \bar{r}).
$$

K ロ ト K 御 ト K ヨ ト K

 2040