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1 Optimization with inequality constraints

Optimization problem with inequality constraints. Necessary conditions for op-
timality: Kuhn-Tucker Theorem.

Exercise 1 (SHSS 3.5, 1) Solve the problem max 1− x2 − y2 subject to x ≥ 2
and y ≥ 3 by a direct argument, and then see wht the Kuhn-Tucker conditions
have to say about the problem.

Exercise 2 (SHSS 3.5, 2) (a) Consider the nonlinear programming problem
(where c is a positive constant)

maximize ln(x+ 1) + ln(y + 1) subject to
{
x+ 2y ≤ c
x+ y ≤ 2

Write down the necessary Kuhn-Tucker conditions for a point (x, y) to be a
solution of the problem.

(b) Solve the problem for c = 5/2.
(c) Let V (c) denote the value function. Find the value of V ′(5/2).

Exercise 3 (SHSS 3.5, 3) Solve the following problem (assuming it has a so-
lution)
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minimize 4 ln(x2 + 2) + y2 subject to x2 + y ≥ 2, x ≥ 1

(Hint: Reformulate it as a standard Kuhn-Tucker maximization problem.)

Exercise 4 (SHSS 3.5, 4) Solve the problem max−(x − a)2 − (y − b)2 subjet
to x ≤ 1, y ≤ 2, for all possible values of the constants a and b. ( A good check
of the results is to use a geometric interpretation of the problem.)

Exercise 5 (SHSS 3.5, 5) Consider the problem max f(x, y) = xy subject to
g(x, y) = (x+y−2)2 ≤ 0. Explain why the solution is (x, y) = (1, 1). Verify that
the Kuhn-Tucker conditions are not satisfied for any λ, and that the Constraint
Qualification does not hold at (1, 1).

Exercise 6 (SHSS 3.5, 6)
(a) Find the only possible solution to the nonlinear programming problem
maximize x5 − y3 subject to x ≤ 1, x ≤ y

(b) Solve the problem by using iterated optimization: Find first the maximum
value f(x) in the problem of maximizing x5 − y3 subject to x ≤ y, where x is
fixed and y varies. Then maximize f(x) subject to x ≤ 1.

Exercise 7 (SHSS 3.6, 1) Solve the problem max 1− (x− 1)2 − ey2 subject to
x2 + y2 ≤ 1.

Exercise 8 (SHSS 3.6, 2) Solve the problem maxxy+x+y subject to x2+y2 ≤
2, x+ y ≤ 1.

Exercise 9 (B 6, 88) Let u = (u1, u2) be a non zero vector of R2 and let f be
the function from R2 to R defined by f(x) = u · x = u1x1 + u2x2. Using simple
argument and the sign of u1 and u2, find the solution of the following optimisation
problem:
1) min{f(x) | x1 ≥ 0, x2 ≥ 0};
2) min{f(x) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1};
3) min{f(x) | x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1};
4) min{f(x) | x1 ∈ [−1, 2], x2 ∈ [0, 1]};
5) min{f(x) | |x1|+ |x2| ≤ 1};
6) min{f(x) | max{|x1|, |x2|} ≤ 1};

Exercise 10 (B 6, 90) Solve the following optimisation problem:{
Minimise x2 + y2

2x+ y ≤ −4

Let us consider the following optimisation problem:
Maximise 3x1x2 − x32
x1 ≥ 0, x2 ≥ 0
x1 − 2x2 = 5
2x1 + 5x2 ≥ 20
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Draw the feasible set and show that the positivity constraints are non binding
at the solution. Write the KKT conditions and find the solution.

Exercise 11 (B 6, 91) Solve the following optimisation problems:
Maximise ln(x1x2x3)
x21 + x22 + x23 ≤ 4
x1 + x2 + x3 = 3
x1 > 0, x2 > 0, x3 > 0
Minimise x21 + x22
x1 + x2 ≥ 1
x1 ≥ 0, x2 ≥ 0

Exercise 12 (B 6, 93) Let p ∈ Rn
++ and w > 0. We consider the following

problem:
Maximise f(x1, x2, x3) = x1x2 . . . xn∑n

i=1 pixi ≤ w
x ∈ Rn

+

1) Show that there exists an element x ∈ Rn
++ such that

∑n
i=1 pixi ≤ w.

2) Show that there exists a least one solution.
3) Show that if x̄ is a solution, then x̄ ∈ Rn

++.
4) Show that if x̄ is a solution, then

∑n
i=1 pix̄i = w.

5) Write the KKT conditions and find the unique solution of the problem.
6) If we denote by x̄(p, w) the optimal solution, compute v(p, w) = f(x̄(p, w))
and compute its partial derivatives. Show the link between the partial derivative
with respect to w and the KKT multipliers.

Exercise 13 (B 6, 95) We are looking for the closest point for the Euclidean
norm to the point (10, 10) in the closed unit ball.
1) Explain that this question is equivalent to solve the following problem:{

Minimise (x− 10)2 + (y − 10)2

x2 + y2 ≤ 1

1) Show that this problem is a convex optimisation problem.
2) Show that this problem has a unique solution.
3) Find the solution of this problem.

Exercise 14 (B 6, 96) Let f from Rn to R defined by f(x) = exp(‖x‖2) + a · x
where a is a given vector of Rn and ‖ · ‖ is the Euclidean norm.
1) Show that f is convex.
2) Find the solution of the following problem:{

Minimise f(x)
‖x‖ ≤ r

2 Comparative Statics

Comparative statics. Envelope result.
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Exercise 15 (SHSS 3.7, 1)
(a) Solve the nonlinear programming problem (a and b are constants)
maximize 100− e−x − e−y − e−z subject to x+ y + z ≤ a, x ≤ b

(b) Let f ∗(a, b) be the (optimal) value function. Comûte the partial derivatives
of f ∗ with respect to a and b, and relate them with the Lagrange multipliers.

(c) Put b = 0, and show that F ∗(a) = f ∗(a, 0) is concave in a.

Exercise 16 (SHSS 3.7, 2)
For r = 0 the problem

max
x∈[−1,1]

(x− r)2

has two solutions, x = ±1. For r 6= 0, there is only one solution. Show that the
value function f ∗(r) is not differentiable at r = 0.

Exercise 17 (SHSS 3.7, 3)
(a) Consider the problem

max(min)x2 + y2 subject to r2 ≤ 2x2 + 4y2 ≤ s2

where 0 < r < s. Solve the maximization problem and verify the Envelope
Theorem in this case.

(c) Can you give a geometric interpretation of the problem and its solution?

3 Nonnegative constraints

Remarks on nonnegativity assumptions. First order conditions and nonnegative
variables in Unconstrained optimization. First order conditions and nonnega-
tive variables in Equality constrained optimization. First order conditions and
nonnegative variables in Inequality constrained optimization. The general case:
mixed constraints.

Exercise 18 (SHSS 3.8, 1) Solve the problem max 1−x2−y2 subject to x ≥ 0,
y ≥ 0, by (a) a direct argument and (b) using the Kuhn-Tucker conditions.

Exercise 19 (SHSS 3.8, 2) Solve the following nonlinear programming prob-
lems:

(a) maxxy subject to x+ 2y ≤ 2, x ≥ 0, y ≥ 0

(b) maxxαyβ subject to x + 2y ≤ 2, x > 0, y > 0, where α > 0 and β > 0,
and α + β ≤ 1.

Exercise 20 (SHSS 3.8, 3)
(a) Solve the following problem for all values of constant c:
max f(x, y) = cx+ y subject to g(x, y) = x2 + 3y2 ≤ 2 ≤ 2, x ≥ 0, y ≥ 0

(b) Let f ∗(c) denote ghe value function. Verify taht it is continuous. Check if
the Envelope Theorem holds.
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Exercise 21 (SHSS 3.8, 4)
(a) Write down the necessary Kuhn-Tucker conditions for the problem

max ln(1 + x) + y subject to px+ y ≤ m,x ≥ 0, y ≥ 0

(b) Find the solution whenever p ∈ (0, 1] and m > 1.

Exercise 22 (SHSS 3.8, 5) A model for studying the export of gas from Russia
to the rest of Europe involves the following optimization problem:

max[x+y− 1

2
(x+y)2− 1

4
x− 1

3
y] subject to x ≤ 5, y ≤ 3,−x+2y ≤ 2, x ≥ 0, y ≥ 0

Sketch the admissible set S in the xy -plane, and show that the maximum cannot
occur at an interior point of S. Solve the problem.

Exercise 23 (SHSS 3.8, 6) (Harder) With reference to problem

(1) max f(x) subject to gj(x) ≤ bj, j = 1, . . . ,m, x1 ≥ 0, . . . , xn ≥ 0

define L̂(x, λ) = f(x) −
∑m

j=1 λj(gj(x) − bj). We say that L̂ has a saddle point
at (x∗, λ∗) with x∗ ≥ 0, λ∗ ≥ 0, if

L̂(x, λ∗) ≤ L̂(x∗, λ∗) ≤ L̂(x∗, λ) for all x ≥ 0 and all λ ≥ 0 (∗)

(a) Show that if L̂ has a saddle point at (x∗, λ∗), then x∗ solves problem (1).
(Hint: Use the second inequality in (∗) to show that gj(x∗) ≤ bj for j = 1, . . . ,m.
Show next that

∑m
j=1 λj(gj(x

∗)− bj) = 0. Then use the first inequality in (∗) to
finish the proof.)

(b) Suppose that there exist x∗ ≥ 0 and λ∗ ≥ 0 satisfying both gj(x
∗) ≤ bj

and gj(x∗) = bj whenever λ∗j > 0 for j = 1, . . . ,m, as well as L̂(x, λ∗) ≤ L̂(x∗, λ∗)

for all x ≥ 0. Show that L̂(x, λ) has a saddle point at (x∗, λ∗) in this case.

4 Concavity and convexity in Optimization The-
ory

Exercise 24 (B 5, 64) Let a be a real number and f be a function from R3 to
R defined by:

f(x, y, z) = 3x2 + 2y2 + z2 + axy + 2yz + 2xz

For which values of a, the function f is convex?

Exercise 25 (B 5, 67) We consider the function f from R2 to R defined by:

f(x, y) =
√
x2 + y2 − x
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1) For all (x, y) ∈ R2 \ {0}, compute the gradient of the function f .
2) Show, without any computation, that the function f is convex.
3) Show that f(x, y) ≥ 0 for all (x, y) ∈ R2.
4) Compute f(0, 0) and give the minimum of f on R2.
5) Give all minima of f on R2.

We consider the sequence (xn, yn) = (n, 1).
6) Show that the sequence ∇f(xn, yn) converges to a limit and compute this
limit. Show that the sequence f(xn, yn) converges to the minimal value of f on
R2. Show that the sequence (xn, yn) does not converge to a minimum of f on R2.

Exercise 26 (B 5, 70) Let f be the function from R2 to R defined by :

f(x, y) = x2y2 − 4x2 − y2

We are looking for the extremum of this function.
1) Compute the gradient vector and Hessian matrix of f at any point (x, y) of
R2.
2) Find the points for which the gradient vanishes.
3) By studying the sign of the Hessian matrix at the points found above, find
the local maximum and minimum of f and the critical points which are neither
a local minimum nor a local maximum.
4) Show that the function f has neither a global maximum nor a global minimum
on R2.

Exercise 27 (B 5, 71) Let f be the function from R3 to R defined by :

f(x, y, z) = x2 + xy + y2 + 2z4 − z2

We consider the following optimisation problem:

(P)

{
min f(x, y, z)
s.c. (x, y, z) ∈ R3

1) Compute the gradient vector and the Hessian matrix of f at any point (x, y, z)
of R3.
2) Find the points where the gradient vanishes.
3) By studying the sign of the Hessian matrix at the points found above, find
the local maximum and minimum of f and the critical points which are neither
a local minimum nor a local maximum.
4) By studying f(−x,−y,−z), what can we say about the uniqueness of a solu-
tion?

Exercise 28 (B 5, 72) Let f be the function from R2 to R defined by f(x, y) =
x4 + y4 − (x− y)2.
1) Compute the points where the gradient of f vanishes and study the sufficient
second order conditions at these points.
2) Show that f is coercice.
3) Show that f has a minimum on R2 and give this minimum.
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Exercise 29 (B 5, 73) Let f be the function from Rn
++ to R defined by f(x) =∑n

i=1 xi ln
(

1
xi

)
. Show that this function has a maximum on Rn

++.
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