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1 Metric spaces, normed spaces

Exercise 1 (B II, 1)
Let ϕ be a concave, continuous, strictly increasing function from R+ to R+

satisfying ϕ(0) = 0.
1) Show that for all (t, t′) ∈ R+ × R+, such that 0 < t < t′,

ϕ(t′)

t′
≥ ϕ(t′)− ϕ(t)

t′ − t
≥ ϕ(t+ t′)− ϕ(t)

t′

and deduce that ϕ(t+ t′) ≤ ϕ(t) + ϕ(t′).
2) Let (X, d) be a metric space. Show that ϕ ◦ d is a distance on X.
3) Let ϕ(t) = t

1+t
defined on R+. Show that ϕ satisfies the assumptions of the

exercise.
4) Let (X, d) be a metric space. Show that δ from X × X to R+ defined by
δ(x, y) = d(x,y)

1+d(x,y)
is a distance on X.

Exercise 2 (B II, 2) Let ((X i, di)pi=1 be p metric spaces. Let N be a norm
on Rp such that for all (ξ, ζ) ∈ Rp

+ × Rp
+, if ξ ≥ ζ, that is ξi ≥ ζi for all
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i = 1, . . . , p, then N(ξ) ≥ N(ζ). Show that the function δN defined by: for all
(x = (xi), y = (yi)) ∈ X ×X,

δ(x, y) = N
(
(di(xi, yi))pi=1

)
is a distance on X.

Exercise 3 (B II, 7) On R, show that the distance d defined by d(x, y) = |x−y|
and δ defined by δ(x, y) = d(x,y)

1+d(x,y)
are not equivalent but topologically equivalent.

Exercise 4 (B II, 10) Let (X, d) be a metric space and F be a nonempty subset
of X. We define the function distance to F , dF , by dF (x) = inf{d(x, y) | y ∈ F}.
We prove that this function is Lipschitz continuous of rank 1.

Let (x, y) ∈ X × X. We assume without any loss of generality that dF (x) ≥
dF (y).
1) Let r > 0. Show that there exists ζ ∈ F such that d(y, ζ) ≤ dF (y) + r.
2) Show that dF (x)− dF (y) ≤ d(x, ζ)− d(y, ζ) + r.
3) Deduce from the previous question that dF (x)− dF (y) ≤ d(x, y) + r.
4) Conclude.

Exercise 5 (B II, 12) Let (E,N) be a normed linear space. We define the norm
N2 on E × E by N2(x, y) = N(x) + N(y). We define the norm Ñ on R × E by
Ñ(t, x) = |t|+N(x).
1) Show that the mapping Σ from E × E to E defined by Σ(x, y) = x + y is
continuous for the norms N2 and N .
2) Show that the mapping Π from R×E to E defined by Π(t, x) = tx is continuous
for the norms Ñ and N .

Exercise 6 (B II, 26) We consider the space C1([0, 1]) of C1 functions on [0, 1]
with the uniform norm ‖ · ‖∞. Let Φ be the derivation operator from C1([0, 1]) to
C([0, 1]) defined by Φ(f) = f ′.
1) Show that Φ is a linear mapping.
2) Show that Φ is not continuous if C([0, 1]) is also equipped with the uniform
norm ‖ · ‖∞. Hint: consider the sequence fν(t) = 1

ν+1
sin(2πνt).

Exercise 7 (B II, 29) The aim of this exercise is to prove the space C([0, 1],R)

with the norm ‖f‖1 =
∫ 1

0
|f(t)|dt is not a Banach space.

Let us consider the sequence (fν) defined by fν(t) = 0 for t ∈ [0, 1
2
− 1

3(ν+1)
],

fν(t) = 3(ν+1)
2

t + 1
2
− 3(ν+1)

4
for t ∈ [1

2
− 1

3(ν+1)
, 1
2

+ 1
3(ν+1)

] and fν(t) = 1 for
t ∈ [1

2
+ 1

3(ν+1)
, 1].

1) Show that this sequence satisfies the Cauchy Criterion for the norm ‖ · ‖1. For
ν < µ, note that

‖fν − fµ‖1 =

∫ 1
2
+ 1

3(ν+1)

1
2
− 1

3(ν+1)

|fν(t)− fµ(t)|dt
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Assume that this sequence has a limit f̄ in C([0, 1]).
2) Show that for all ν,

‖f̄ − fν‖1 =

∫ 1
2
− 1

3(ν+1)

0

|f̄(t)|dt+

∫ 1
2
+ 1

3(ν+1)

1
2
− 1

3(ν+1)

|f̄(t)− fν(t)|dt+

∫ 1

1
2
+ 1

3(ν+1)

|f̄(t)− 1|dt

3) Deduce from the previous question that for all r ∈]0, 1/2[,
∫ 1

2
−r

0
|f̄(t)|dt and∫ 1

1
2
+r
|f̄(t)− 1|dt are equal to 0.

4) Deduce from the previous question that f̄(t) = 0 on [0, 1/2[ and f̄(t) = 1 on
]1/2, 1].
4) Show that we get a contradiction.

2 Sequences

Exercise 8 (SHSS A3, 1) Prove that the sequence (xk) defined by x1 = 1,
xk+1 = 2

√
xk for k ≥ 1 converges, and find its limit. (Hint: Prove first by

induction that xk < 4 for all k.)

Exercise 9 (SHSS A3, 2) Prove that the sequence (xk) defined by x1 =
√

2,
xk+1 =

√
xk + 2 for k ≥ 1 satisfies |xk+1 − 2| < 1

2
|xk − 2|, and use this to prove

that xk → 2 as k →∞. (Hint: xk+1 − 2 = (x2k+1 − 4) (xk+1 + 2).)

Exercise 10 (SHSS A3, 3) Let S be a nonempty set of real numbers bounded
above, and b∗ = supS. Show that there exists a sequence (xn), xn ∈ S, such that
xn → b∗.

Exercise 11 (SHSS A3, 6) Let (xk) be a qequence such that |xk+1−xk| < 1/2k

for k ≥ 1. Prove that (xk) is a Cauchy sequence.

Exercise 12 (SHSS A3, 7) Prove that if (xk) converges to both x and y, then
x = y.

Exercise 13 (SHSS A3, 9) Prove that every suquence of real numbers has a
monotone subsequence.

Exercise 14 (SHSS 13.2, 1) Find the limits of the following sequences in R2

if the limits exist.
(a) xk = (1/k, 1 + 1/k);
(b) xk = (k, 1 + 3/k);
(c) xk = ((k + 2)/3k, (−1)k/2k);
(d) xk = (1 + 1/k, (1 + 1/k)k);

Exercise 15 (SHSS 13.2, 2) Prove that a squence in Rn cannot converge to
more than one point.
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Exercise 16 (SHSS 13.2, 3) Prove that every convergent sequence in Rn is a
Cauchy sequence.

Exercise 17 (SHSS 13.2, 4) Prove that if every sequence of point is a set
S in Rn contains a convergent subsequence, then S is bounded. (Hint: If S
is unbounded, then for each natural number k, there exists and xk in S with
‖xk‖ > k.)

Exercise 18 (SHSS 13.2, 5) Let (xk) be a sequence of points in ca compact
subset X of Rn. Prove that if every convergent subsequence of (xk) has the same
limit x0, then (xk) converges to x0.

Exercise 19 (B II, 3) LetX be a set and d be the distance defined by d(x, y) = 0
if x = y and d(x, y) = 1 if x 6= y. Show that a sequence is convergent for this
distance if and only if it is constant after a given rank, that is, for a sequence
(uν), there exists ν ∈ N such that for all ν ≥ ν, uν = uν .

Exercise 20 (B II, 4) LetX be a set and d be the distance defined by d(x, y) = 0
if x = y and d(x, y) = 1 if x 6= y. Show that (X, d) is a complete metric space.

Exercise 21 (B II, 6) Let us now consider the following norm N on `∞:

N((uν)) =
∞∑
ν=0

1

2ν
|uν |

The purpose of the exercise is to show that `∞ is not complete for the norm N .
Let us consider the sequence (ui = (uiν)ν∈N)i∈N of `∞ defined by: for all i ∈ N,

uiν = ν if ν ≤ i, i otherwise

1) Show that this sequence satisfies the Cauchy criterion for the norm N .
2) Show that for all v ∈ `∞, the real sequence N(ui − v) is bounded below by a
non negative number for all i large enough and conclude that the sequence (ui)
is not convergent for the norm N .

Exercise 22 (B II, 8) Let X be a set and d and δ two topologically equivalent
distances on X. Show that a sequence (uν) of X is convergent for d if and only
if it is convergent for δ.

3 Fixed Points

Exercise 23 (SHSS 14.4, 1) Consider the function f defined for all x ∈]0, 1[
by

f(x) =
1

2
(x+ 1)

Prove that f maps ]0, 1[ into itself, but f has no fixed point. Why does Brouwer’s
theorem not apply?

4



Exercise 24 (SHSS 14.4, 2) Consider the continuous transfomration T =
(x, y)→ (−y, x) from the xy-plane into itself, consisting of a 90◦ rotation around
the origin. Define the set

E = {(x, y) | x2 + y2 = 1}, B = {(x, y) | x2 + y2 ≤ 1}

Are these sets compact? T induces continuous maps TE : E → E and TB : B →
B. Does either transformation have a fixed point? Explain the results in the light
of Brouwer’s theorem.

Exercise 25 (SHSS 14.4, 3) Let A = (ai,j) be an n×n matrix whose elements
all satisfy aij ≥ 0. Assume that all comun sums are 1, so that

∑n
i=1 aij = 1,

(j = 1, . . . , n). Prove that if x ∈ ∆n−1, then Ax ∈ ∆n−1, where ∆n−1 is the unit
simplex defined by

∑n
i=1 δi = 1, δi ≥ 0 for all i = 1, . . . , n. Hence x → Ax is a

(linear) transofrmation of ∆n1 into itself. What does Brouwer’s theorem say in
this case?

4 Finite Horizon Dynamic Programming

Exercise 26 (SHSS 12.1, 1) (a) Solve the problem

max
2∑
t=0

(1− (x2t + 2u2t )), xt+1 = xt − ut, t = 0, 1

where x0 = 5 and ut ∈ R. (Compute Js(x) and u∗s(x) for s = 2, 1, 0.)
(b) Use the difference equation in xt+1 = xt−ut to compute x1 and x2 in terms

of u0 and u1 (with x0 = 5), and find the objective function as a function S of
u0, u1, and u2. Next, maximize this function and find the solution of the initial
problem.

Exercise 27 (SHSS 12.1, 2) Consider the problem

max
ut∈[0,1]

T∑
t=0

(
1

1 + r

)t√
utxt, xt+1 = ρ(1− ut)xt, t = 0, 1, . . . , T − 1, x0 > 0

where r is the rate of discount. Compute Js(x) and u∗s(x) for s = T, T − 1, T − 2.

Exercise 28 (SHSS 12.1, 4) Consider the problem

max
ut∈[0,1]

T∑
t=0

(3− ut)x2t , xt+1 = utxt, t = 0, 1, . . . , T − 1, x0is given

(a) Compute the value functions JT (x), JT−1(x), JT−2(x), and the correspond-
ing control function u∗T (x), u∗T−1(x) and u∗T−2(x).

(b) Find an expression for JT−n(x) for n = 0, 1, . . . , T , and the corresponding
optimal controls.
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Exercise 29 (SHSS 12.1, 5) Solve the problem

max
ut∈[0,1]

T1∑
t=0

(
−2

3
ut

)
+ lnxT , xt+1 = xt(1 + ut), t = 0, 1, . . . , T − 1, x0 > 0 given

Exercise 30 (SHSS 12.1, 7) (a) Consider the problem

max
ut∈R

T1∑
t=0

(
−e−γut

)
− αe−γxT , xt+1 = 2xt − ut, t = 0, 1, . . . , T − 1, x0 given

where α and γ are positive constants. Compute JT (x), JT−1(x), and JT−2(x).
(b) Prove that Jt(x) written in the form Jt(x) = −αte−γx, and find a difference

equation for αt.

Exercise 31 (B II, 35) Compute the optimal allocation in the following problem
when u(c) =

√
c and u(c) = ln(c):

Maximise u(c1) + βu(c2)
c2 = (1 + r)(w0 − c1)
c1 ≥ 0, c2 ≥ 0

Exercise 32 (B II, 36) Compute the optimal allocation in the T period problem Maximise
∑T−1

τ=t+1 β
τu(cτ )

(1 + r)T−t−1ct+1 + (1 + r)T−t−2ct+2 + . . .+ (1 + r)cT−1 ≤ (1 + r)T−t−1wt+1

cτ ≥ 0, for t = t+ 1, . . . , T − 1

when u(c) =
√
c and u(c) = ln(c). Compute the derivative of the value function

with respect to w0 and check that it is equal to λ0.

Exercise 33 (B II, 37) Write the complete first order necessary conditions of
the problem 

Maximise
∑T−1

t=0 β
tft(at, st) + βTfT (sT )

st+1 = gt(at, st), t = 0, . . . , T − 1,
(at, st) ∈ At t = 0, . . . , T − 1
sT ∈ AT

when the sets At are defined as follows:

At = {(a, s) ∈ R2 | s ≥ 0, a ∈ [αt(s), αt(s)]}

where αt and αt are continuously differentiable functions from R+ to R satisfying
αt(s) ≤ αt(s) for all s ∈ R+.

Exercise 34 (B II, 38) Apply the dynamical programming algorithm to the
intertemporal allocation of wealth with β ∈]0, 1[, the interest rate r equals to 0
and the utility function is ln c.
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5 Stationary Dynamic Programming

Exercise 35 (SHSS 12.3, 1) Consider the problem

max
ut∈R

∞∑
t=0

βt
(
−e−ut − 1

2
e−xt

)
, xt+1 = 2xt − ut, t = 0, 1, . . . , x0 given

where β ∈]0, 1[. Find a constant α > 0 such that J(x) = −αe−x solves the
Bellman equation, and show that α is unique.

Exercise 36 (SHSS 12.3, 2) (a) Consider the following problem with β ∈]0, 1[:

max
ut∈R

∞∑
t=0

βt
(
−2

3
x2t − u2t

)
, xt+1 = xt + ut, t = 0, 1, . . . , x0 given

Suppose that J(x) = −αx2 solves the Bellman equation. Find a quadratic equa-
tion for α. Then find the assoicated value of u∗.

(b) By looking at the objective function, show that, fiven any starting value
x0, it is reasonable to ignore any policy that fails to satisfy both |xt| ≤ |xt−1| and
|ut| ≤ |xt−1| for t = 1, 2, . . . Is the instantaneous objective function −2

3
x2t − u2t

bounded on the feasible reasonable paths?

Exercise 37 (Ramsay growth model) (B II, 39)
1) Write the first order necessary conditions for the Ramsay growth model at an
interior solution (c∗t , k

∗
t ), that is c∗t ∈]0, k∗t [ for all t.

2) Derive from these conditions the Euler equation:

βu′(c∗t+1)f
′(k∗t+1) = u′(c∗t )

3) Show that an optimal solution is always an interior solution as a consequence
of the Inada condition u′(0) = +∞.

Exercise 38 Ramsay growth model: (B II, 41) Check that the following as-
sumptions are satisfied in the Ramsey growth model:

a) ft and gt are concave functions and increasing with respect to s;

b) At is convex and if (at, st) ∈ At and s′t ≥ st, then (at, s
′
t) ∈ At.

c) At a solution (a∗0, s
∗
0) of the problem with the initial state s∗0. We assume that

the functions f0 and g0 are differentiable on a neighbourhood of (a∗0, s
∗
0) and

∂g0
∂a

(a∗0, s
∗
0) 6= 0.

Show that at an interior solution:

V ′(k∗0) = u′(c∗0)f
′(k∗0)
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Exercise 39 Steady state (B II, 42) We consider the Bellman equation and we
denote by α(s0) the optimal solution given s0. A fixed point s∗ of g(α(·), ·) is
called a Steady state. Show that if s0 = s∗, then the optimal solution of the
problem is the constant sequence(α(s∗), s∗)t∈N.

We consider the set B(I) of the bounded functions from I to R with the uniform
norm. We recall that this is a complete metric space. We define an operator T
from B(I) to itself as follows:

Th(s) = sup{f(a, s) + βh(g(a, s)) | (a, s) ∈ A}

Remark 1 Th is well defined since h bounded, g(a, s) ∈ I by assumption, the
set of a such that (a, s) ∈ A is compact and f is continuous and upper-bounded.

Exercise 40 (B II, 43) Show that if I = R+ and A is defined by

A = {(a, s) ∈ R2 | s ≥ 0, a ∈ [α(s), α(s)]}

where α and α are continuous functions from R+ to R satisfying α(s) ≤ α(s) for
all s ∈ R+, then Th defined by

Th(s) = sup{f(a, s) + βh(g(a, s)) | (a, s) ∈ A}

is continuous if h is a continuous function of B(I), the set of bounded functions
from I to R with the uniform norm.

Exercise 41 (B II, 44) We consider the stationary Ramsay growth model. We
consider the Bellman equation and for all k ≥ 0, we denote by α(k) the optimal
solution. Let ϕ(k) = f(k)− α(k).
1) Show that α and ϕ are continuous.
2) Show that if k > 0, then ϕ(k) > 0 and α(k) > 0.
3) Show that ϕ is increasing.
4) Show that f − ϕ is increasing.

Exercise 42 (B II, 45) We consider the stationary Ramsay growth model.
1) Show that if we choose an interval I = [0, k̂] with k̂ ≥ k̄, where k̄ is the fixed
point of f , then Assumption B is satisfied.
2) Show that the optimal capital stock (k∗t ) is monotonic;
3) Show that if f ′(0) ≤ 1

β
, then the optimal capital stock (k∗t ) converges to 0;

3) Show that if f ′(0) > 1
β
, then the optimal capital stock (k∗t ) converges to a

steady state K which is strictly positive and satisfies f ′(K) = 1
β
.
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