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1 Metric spaces, normed spaces

Exercise 1 (B II, 1)

Let ¢ be a concave, continuous, strictly increasing function from R, to R,
satisfying ¢(0) = 0.
1) Show that for all (¢,¢') € Ry x Ry, such that 0 <t < ¢,

p(t) o ) —o(t) o et +1) = o(t)
o= v—t = t

and deduce that o(t +t") < p(t) + ©(t').

2) Let (X, d) be a metric space. Show that ¢ o d is a distance on X.

3) Let ¢(t) = 757 defined on R,. Show that ¢ satisfies the assumptions of the
exercise.

4) Let (X,d) be a metric space. Show that ¢ from X x X to Ry defined by

é(z,y) = 11(;(13,2) is a distance on X.

Exercise 2 (B II, 2) Let ((X*,d")?_, be p metric spaces. Let N be a norm
on R? such that for all (£,¢) € RL x RL, if £ > (¢, that is § > ¢ for all
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i=1,...,p, then N(&) > N({). Show that the function dx defined by: for all
(z=(2"),y=(y)) € X x X,

Sz, y) = N ((d'(2, y"))i-y)
is a distance on X.

Exercise 3 (B II, 7) On R, show that the distance d defined by d(z,y) = | —y|

and § defined by §(z,y) = 5 +(d:?$)y) are not equivalent but topologically equivalent.

Exercise 4 (B II, 10) Let (X, d) be a metric space and F' be a nonempty subset
of X. We define the function distance to F', dr, by dp(z) = inf{d(z,y) | y € F}.
We prove that this function is Lipschitz continuous of rank 1.
Let (z,y) € X x X. We assume without any loss of generality that dp(z) >
dr(y).
1) Let r > 0. Show that there exists ¢ € F such that d(y,() < dp(y) + .
2) Show that dp(z) — dr(y) < d(z,{) —d(y,() + .
3) Deduce from the previous question that dp(z) — dp(y) < d(x,y) +r
)

4) Conclude.

Exercise 5 (B 11, 12) Let (E, N) be a normed linear space. We define the norm
]\~f2 on E x E by N?(x,y) = N(z) + N(y). We define the norm NonRx E by
N(t,x) = |t| + N(x).

1) Show that the mapping ¥ from E x E to E defined by X(z,y) = z + y is
continuous for the norms N? and N.

2) Show that the mapping IT from Rx E to F defined by I1(t, z) = tz is continuous
for the norms N and N.

Exercise 6 (B II, 26) We consider the space C'([0,1]) of C! functions on [0, 1]
with the uniform norm || - ||o. Let ® be the derivation operator from C*([0,1]) to
C([0,1]) defined by ®(f) = f'.

1) Show that ® is a linear mapping.

2) Show that ® is not continuous if C([0,1]) is also equipped with the uniform

norm || - |l. Hint: consider the sequence f,(t) = ? sin(27vt).

Exercise 7 (B II, 29) The aim of this exercise is to prove the space C([0, 1], R)
with the norm || f|; = fol | f(t)|dt is not a Banach space.

Let us consider the sequence (f,) defined by f,(t) = 0 for ¢t € [0, 5 — m],
f(t) = ”H)t + ”H for t € [% — —3(V11),% + —3(1/1“)] and f,(t) = 1 for
t e [5 + 3(’/1_’_1), 1].

1) Show that this sequence satisfies the Cauchy Criterion for the norm || - ||;. For

v < u, note that

1

+ v+1
I~ fuli= [ T )~ fuola

27 3(v+1)

2



Assume that this sequence has a limit f in C([0, 1]).
2) Show that for all v,
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3) Deduce from the previous question that for all r €]0,1/2], foé_r |f(t)]dt and
fl1+r |f(t) — 1|dt are equal to 0.

2 — —
4) Deduce from the previous question that f(¢) = 0 on [0,1/2[ and f(t) = 1 on
11/2,1].
4) Show that we get a contradiction.

2 Sequences

Exercise 8 (SHSS A3, 1) Prove that the sequence (zj) defined by x; = 1,
Tpy1 = 24/zy for k > 1 converges, and find its limit. (Hint: Prove first by
induction that z;, < 4 for all £.)

Exercise 9 (SHSS A3, 2) Prove that the sequence (z;) defined by z; = v/2,
Tpy1 = Vg + 2 for k > 1 satisfies |xp4 — 2| < %]azk — 2|, and use this to prove
that x; — 2 as k — oco. (Hint: xpyq — 2= (234, —4) (@41 +2).)

Exercise 10 (SHSS A3, 3) Let S be a nonempty set of real numbers bounded
above, and b* = sup S. Show that there exists a sequence (), z,, € S, such that
z, — b*.

Exercise 11 (SHSS A3, 6) Let () be a qequence such that |z, — x| < 1/2F
for kK > 1. Prove that (zj) is a Cauchy sequence.

Exercise 12 (SHSS A3, 7) Prove that if (x}) converges to both = and y, then
r=y.

Exercise 13 (SHSS A3, 9) Prove that every suquence of real numbers has a
monotone subsequence.

Exercise 14 (SHSS 13.2, 1) Find the limits of the following sequences in R?
if the limits exist.
() x = (1/k, 1+ 1/k);
(b) x4 = (k, 1+ 3/k);
() x1 = (K + 2)/3k, (—1)*/2k);
(d) xp = (1 + 1/k, (1 + 1/k)*);

Exercise 15 (SHSS 13.2, 2) Prove that a squence in R"™ cannot converge to
more than one point.



Exercise 16 (SHSS 13.2, 3) Prove that every convergent sequence in R” is a
Cauchy sequence.

Exercise 17 (SHSS 13.2, 4) Prove that if every sequence of point is a set
S in R™ contains a convergent subsequence, then S is bounded. (Hint: If S
is unbounded, then for each natural number k, there exists and x; in S with
x| > &.)

Exercise 18 (SHSS 13.2, 5) Let (x;) be a sequence of points in ca compact
subset X of R™. Prove that if every convergent subsequence of (xj) has the same
limit x%, then (x;) converges to x°.

Exercise 19 (B1II, 3) Let X be aset and d be the distance defined by d(z,y) =0
if x =y and d(x,y) = 1 if z # y. Show that a sequence is convergent for this
distance if and only if it is constant after a given rank, that is, for a sequence
(uy), there exists v € N such that for all v > v, u, = u,.

Exercise 20 (B II, 4) Let X be a set and d be the distance defined by d(z,y) = 0
if x =y and d(z,y) = 1 if 2 # y. Show that (X, d) is a complete metric space.

Exercise 21 (B II, 6) Let us now consider the following norm N on £*:

N(() = 3 ool

v=0

The purpose of the exercise is to show that ¢*° is not complete for the norm N.
Let us consider the sequence (u' = (u!,),en)ien of £° defined by: for all i € N,

u,, = v it v <4, 4 otherwise

1) Show that this sequence satisfies the Cauchy criterion for the norm N.

2) Show that for all v € £*°, the real sequence N(u’ — v) is bounded below by a
non negative number for all 4 large enough and conclude that the sequence (u?)
is not convergent for the norm N.

Exercise 22 (B II, 8) Let X be a set and d and ¢ two topologically equivalent
distances on X. Show that a sequence (u,) of X is convergent for d if and only
if it is convergent for §.

3 Fixed Points

Exercise 23 (SHSS 14.4, 1) Consider the function f defined for all x €]0, 1]
by

flo) = 5 +1)

Prove that f maps |0, 1] into itself, but f has no fixed point. Why does Brouwer’s
theorem not apply?



Exercise 24 (SHSS 14.4, 2) Consider the continuous transfomration T =
(x,y) = (—y, z) from the zy-plane into itself, consisting of a 90° rotation around
the origin. Define the set

E={(z,y) | 2*+y* =1}, B={(z,y)|2*+¢y* <1}

Are these sets compact? T induces continuous maps Tg : F — E and T : B —
B. Does either transformation have a fixed point? Explain the results in the light
of Brouwer’s theorem.

Exercise 25 (SHSS 14.4, 3) Let A = (a;;) be an n X n matrix whose elements
all satisfy a;; > 0. Assume that all comun sums are 1, so that Z?Zl a;; = 1,
(j=1,...,n). Prove that if x € A" ! then Ax € A""!, where A"! is the unit
simplex defined by > 0, =1, 6; > 0foralli=1,...,n. Hence x - Ax is a
(linear) transofrmation of A™ into itself. What does Brouwer’s theorem say in
this case?

4 Finite Horizon Dynamic Programming

Exercise 26 (SHSS 12.1, 1) (a) Solve the problem
2
max Z(l — (22 +2ud)), v = 1 —uy, t = 0,1
=0

where zo = 5 and u; € R. (Compute Jy(z) and u’(x) for s = 2,1,0.)

(b) Use the difference equation in x;,1 = x; —u; to compute x; and x5 in terms
of up and uy (with o = 5), and find the objective function as a function S of
up, U1, and us. Next, maximize this function and find the solution of the initial
problem.

Exercise 27 (SHSS 12.1, 2) Consider the problem

T t
1
max E ( ) Ve, e = p(1 —ug)z, t =0,1,..., T — 1,2 > 0
utG[O,l]

— 1+r
where r is the rate of discount. Compute Jy(z) and ul(z) for s =T7,7 —1,T — 2.

Exercise 28 (SHSS 12.1, 4) Consider the problem

T

max (3 —wp)a?, w1 = wpwy, t = 0,1,..., T — 1, mois given
ute[O,l] —o

(a) Compute the value functions Jr(z), Jr_1(z), Jr—_o(z), and the correspond-
ing control function uwi.(z), uh_;(x) and uk_,(x).

(b) Find an expression for Jy_,(z) for n =0,1,...,T, and the corresponding
optimal controls.



Exercise 29 (SHSS 12.1, 5) Solve the problem

Ty
2
m%xl] <—§ut> +Inzr, v =2 (14+u),t=0,1,...,7 — 1,29 > 0 given
ute|0,

t=0

Exercise 30 (SHSS 12.1, 7) (a) Consider the problem

T
max (—6_7“’5) —ae Ty =20 —w, t =0,1,...,T — 1, 2 given
ut€ER =0
where « and v are positive constants. Compute Jr(x), Jr_i(x), and Jr_o(z).
(b) Prove that J;(x) written in the form J;(z) = —aye™ ", and find a difference

equation for .

Exercise 31 (B II, 35) Compute the optimal allocation in the following problem
when u(c) = y/c and u(c) = In(c):

Maximise u(cy) + Su(cz)
Cy = (1 + T)(U]Q - Cl)
c1 20,020

Exercise 32 (B II, 36) Compute the optimal allocation in the T period problem

Maximise Zf;tlﬂ BTu(cr)
A+ e+ (T4+r) T 200+ .+ (T+7r)ery < (T+7) 1wy
¢, >0, fort=t+1,....,T -1

when u(c) = /c and u(c) = In(c). Compute the derivative of the value function
with respect to wg and check that it is equal to .

Exercise 33 (B II, 37) Write the complete first order necessary conditions of
the problem

Maximise S, B filas, ) + BT fr(sr)

str1 = gelag, s¢), t=10,...,T =1,

(ar, ;) € Ay t=0,....,T—1

ST € AT

when the sets A, are defined as follows:
A ={(a,s) €R?* | s>0,a € [o,(s),a,(s)]}

where o, and @, are continuously differentiable functions from R to R satisfying
a,(s) < @y(s) for all s € Ry.

Exercise 34 (B II, 38) Apply the dynamical programming algorithm to the
intertemporal allocation of wealth with 8 €]0, 1], the interest rate r equals to 0
and the utility function is Inc.



5 Stationary Dynamic Programming

Exercise 35 (SHSS 12.3, 1) Consider the problem

o0
1
max E B —e ™ — e |z = 22, —uy, t =0,1,..., 70 given
u€R =0 2

where § €]0,1[. Find a constant « > 0 such that J(z) = —ae™* solves the
Bellman equation, and show that « is unique.

Exercise 36 (SHSS 12.3, 2) (a) Consider the following problem with 5 €]0, 1]:

oo
2 .
max 5 Bt —Zaf —ul ), 2 =2 +u, t =0,1,..., 20 given
ut€R =0 3

Suppose that J(z) = —ax? solves the Bellman equation. Find a quadratic equa-
tion for ar. Then find the assoicated value of u*.

(b) By looking at the objective function, show that, fiven any starting value
T, it is reasonable to ignore any policy that fails to satisfy both |z;| < |z;—;| and
lug| < |ay—q] for t = 1,2,... Is the instantaneous objective function —2a7 — uf
bounded on the feasible reasonable paths?

Exercise 37 (Ramsay growth model) (B 11, 39)

1) Write the first order necessary conditions for the Ramsay growth model at an
interior solution (¢}, k;), that is ¢; €]0, kf| for all ¢.

2) Derive from these conditions the Euler equation:

5U,(C:+1)f,(k:+1) = u'(cf)

3) Show that an optimal solution is always an interior solution as a consequence
of the Inada condition «/(0) = +oc.

Exercise 38 Ramsay growth model: (B II, 41) Check that the following as-
sumptions are satisfied in the Ramsey growth model:

a) f; and g; are concave functions and increasing with respect to s;
b) A; is convex and if (ay, s;) € A; and s; > 4, then (aq, s}) € Ay

c) At a solution (af, s§) of the problem with the initial state si. We assume that
the functions f and gy are differentiable on a neighbourhood of (ag, s§) and

0
Ba (a5, 55) 7 0.

Show that at an interior solution:

VI(kg) = u'(ch) ' (kg)



Exercise 39 Steady state (B II, 42) We consider the Bellman equation and we
denote by «(sg) the optimal solution given so. A fixed point s* of g(a(-),-) is
called a Steady state. Show that if s = s*, then the optimal solution of the
problem is the constant sequence(a(s*), s*)en.

We consider the set B(I) of the bounded functions from / to R with the uniform
norm. We recall that this is a complete metric space. We define an operator T'
from B(I) to itself as follows:

Th(s) = sup{f(a,s) + Bh(g(a,s)) | (a,s) € A}

Remark 1 Th is well defined since h bounded, g(a,s) € I by assumption, the
set of a such that (a, s) € A is compact and f is continuous and upper-bounded.

Exercise 40 (B II, 43) Show that if / = R, and A is defined by
A={(a,s) €ER*|s>0,ac [afs),a(s)]}

where o and @ are continuous functions from R, to R satisfying a(s) < @(s) for
all s € Ry, then Th defined by

Th(s) = sup{f(a,s) + Bh(g(a,s)) | (a,s) € A}

is continuous if A is a continuous function of B(I), the set of bounded functions
from I to R with the uniform norm.

Exercise 41 (B II, 44) We consider the stationary Ramsay growth model. We
consider the Bellman equation and for all £ > 0, we denote by a(k) the optimal
solution. Let p(k) = f(k) — a(k).

1) Show that v and ¢ are continuous.

2) Show that if & > 0, then ¢(k) > 0 and a(k) > 0.

3) Show that ¢ is increasing.

4) Show that f — ¢ is increasing.

Exercise 42 (B II, 45) We consider the stationary Ramsay growth model.

1) Show that if we choose an interval I = [0, k] with k > k, where k is the fixed
point of f, then Assumption B is satisfied.

2) Show that the optimal capital stock (k;) is monotonic;

3) Show that if f/(0) < %, then the optimal capital stock (k;) converges to 0;

3) Show that if f’(0) > %, then the optimal capital stock (k}) converges to a

steady state K which is strictly positive and satisfies f/'(K) = %



