
Introductory Finance - Tutorial corrections - Isabelle Nagot

M1 MAEF - DU MMEF - QEM1

Exercise 1. a. See lecture notes, the continuous rate is obtained as ln 1.1 = 0.0953.

(1 + rm
12 )12 = 1.1 then rm

12 = 1.1
1
12 − 1 = 0.79741%. Annualised: rm = 9.569%.

b. x 7→ (1 + x
m)m − (1 + x) is strictly increasing on IR∗+ and worth 1 at 0.

c. and d. See lecture notes.

e. Over [k−1
m , km [, investor A holds M(1 + rm

m )k−1 = Mer
k−1
m while investor B holds Mer

k
m at time k

m

(which is more). The maximal difference is then the maximum over k of: M [er
k
m − er

k−1
m ] (left limit at

k
m), i.e. (for k = m− 1): Mer(1− e−

r
m ).

Exercise 2. Present Value: PV =
100

1.04
+

200

1.0422
+

300

1.0453
= 543.244919 M=C = 543, 244, 919.17=C.

Cf Excel file:

∣∣∣∣∣∣∣∣∣∣
Y ear 1 2 3

Rate (%) 4 4.2 4.5

Cash F low (Mon) 100 200 300

Discount Factor 0.96154 0.92101 0.87630

Exercise 3.

a. The present value at 0 of an annuity with maturity date T is: PV =
T∑
t=1

A

(1 + r)t
.

Using:
T∑
t=1

xt = x
1− xT

1− x
we get:

T∑
t=1

1

(1 + r)t
=

1

1 + r

1− 1

(1 + r)T

1− 1

1 + r

=
1

r

[
1− 1

(1 + r)T

]
.

Then PV =
A

r

[
1− 1

(1 + r)T

]
.

With T = 10, r = 0.05 and A = 100 k=C, we get: PV = 772.173 k=C = 772, 173=C.

b. We take the limit when T → +∞ in
T∑
t=1

1

(1 + r)t
=

1

r

[
1− 1

(1 + r)T

]
, assuming r > 0.

We obtain:
+∞∑
t=1

1

(1 + r)t
=

1

r
, therefore PV =

A

r
.

With r = 0.05 and A = 100=C, we get: PV = 2000=C.

Exercise 4.

a.
P

N
= c

T∑
t=1

1

(1 + ρ)t
+

1

(1 + ρ)T
= f(ρ), can be written f(ρ)

(∗)
=

c

ρ

[
1− 1

(1 + ρ)T

]
+

1

(1 + ρ)T
as well.

b. f(c) = 1 (we saw P = N ⇐⇒ ρ = c). f decreasing then ρ < c⇐⇒ P > N .

c.
C

P
=

5.5%

1.2665
= 4.343%.

Note: YTM=3.231658, duration= 10.880707, convexity=144.014 (see later).
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d.1 P > N ⇒ C
P < C

N = c.

d.2 1st investment: return = ρ. 2nd investment: return = C
P . 2nd is better, then

C

P
> ρ.

Note that the 2nd investment is equivalent to investing P every year at rate C
P .

By direct computation: from (*),
ρP

cN
= 1 +

1

(1 + ρ)T

(
ρ

c
− 1

)
< 1 from ρ < c. Then ρP < C.

e. It is easy to reverse the argument when the bond trades at a discount.

At par: YTM= c and C
P = C

N = c.

Exercise 5. cf Excel file a. P
N and ρ are linked through P

N = 1
(1+ρ)T

.

Here T = 10 at issue date, then 5 + 10,2
12 on 09-oct-23 and 5 + 10,02

12 on 11-oct-24

(gives the price actually observed on the market for these dates).

b.
P

N
and ρ are linked through

P

N
=
c

ρ

[
1− 1

(1 + ρ)T

]
+

1

(1 + ρ)T
(*).

From an observed P , ρ can be computed through a numerical method like the NewtonRaphson method.

If ρ is given, we check the relationship.

Exercise 6.

a. P = 95.6705%, D = 4, 702 years for c = 3% and D = 4, 62 years for c = 4% (cf Excel file).

To compute the price, the formula (*) in Exercise 5. can also be used).

Intuitively, we can imagine that the duration diminishes when the coupon rate increases (more of the

investment gets reimbursed earlier) - and this is satisfied in this example -, but this has to be checked

more precisely as the price changes in that case. This is the purpose of exercise 11.

b. The yield-to-maturity of this annuity is r, as the payment is risk-free and the price is computed

by using the discount rate r for any payment date (as the YTM for a sovereign bond is an average of

the prevailing yield curve).

We have: D =
r

A

+∞∑
t=1

tA

(1 + r)t
= r

+∞∑
t=1

t

(1 + r)t
.

But
+∞∑
t=1

1

(1 + r)t
=

1

r

(∗)⇒
+∞∑
t=1

−t
(1 + r)t+1

= − 1

r2
⇒

+∞∑
t=1

t

(1 + r)t
=

1 + r

r2
then D =

1 + r

r
(not +∞).

N.A.: 21 years. (*): as a power series, the lefthandside quantity is infinitely differentiable on its

area of convergence, and one can differentiate under the sign
∑

.

Notes: - we will see in chapter II, section 3. of the course that the duration is linked to the first derivative

of the price w.r.t the yield-to-maturity, which is what above calculus uses.

- We saw that for x ∈]0, 1[, X =
+∞∑
t=1

txt can be computed by taking the first derivative in
+∞∑
t=1

xt =
x

1− x
.

Other method:

X(1− x) =
+∞∑
t=1

txt −
+∞∑
t=1

txt+1 =
+∞∑
t=0

(t+ 1)xt+1 −
+∞∑
t=1

txt+1 =
+∞∑
t=0

xt+1 =
x

1− x
then X =

x

(1− x)2
.

Exercise 7.

a. The bond paying annually a coupon at rate c(0, T ) with a N face value quotes at par if and only if

c(0, T ) satisfies:
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T∑
t=1

c(0, T )NB(0, t) +NB(0, T ) = N , therefore: c(0, T ) =
1−B(0, T )
T∑
t=1

B(0, t)

=

1− 1

(1 + r(0, T ))T

T∑
t=1

1

(1 + r(0, t))t

.

The par rate for the maturity T , c(0, T ), is an ”average” of the 0-coupon rate curve between 0 and

T , for this issuer. Note that c(0, 1) = r(0, 1).

Note that the notion of par yield is used in constructing interest rate swaps.

b. For a bond at par, the YTM equals the coupon rate, hence the result. The par rate for the maturity

T , c(0, T ), is the coupon rate of a bond which would be issued today, for maturity T .

c. c(0, T ) is the yield of a coupon-bearing bond, it is then affected by the fact that the holder gets some

payments before T , at times corresponding to lower rates. c(0, T ) is then an ”average” of the r(0, t) for

t between 0 and T , hence below r(0, T ).

Equivalently, the 0-coupon rate r(0, T ) corresponds to a longer maturity than c(0, T ).

Note that in that case, the par yield curve itself is increasing as well.

Mathematical proof:

from b., c(0, T ) is the YTM and the coupon rate of a bond which would be issued today, for maturity T .

Therefore: c(0, T )
T∑
t=1

1

(1 + c(0, T ))t
+

1

(1 + c(0, T ))T
= c(0, T )

T∑
t=1

1

(1 + r(0, t))t
+

1

(1 + r(0, T ))T

With c(0, T ) ≥ r(0, T ), we would have ∀t = 1, ..., T , c(0, T ) > r(0, t), and the above inequality would

not be possible (the left-hand side term would be lower).

Exercise 8. T being the time-to-maturity of the bond, we need to discount payments done at dates k
m ,

for k = 1, 2, ...,mT .

Let ρ be the yield-to-maturity for the asset corresponding to this payment frequency m

(we could denote it by ρm to recall its compounding frequency per year).

a. Between two payment dates (spaced by 1
m years), the discount factor in the bond price computation

is 1
1+ ρ

m
(ρ is annualised as usual).

We get P =
mT∑
k=1

Ck
(1 + ρ

m)k
, where Ck is the kth payment.

Note that a payment C, done at t ∈ { 1
m ,

2
m , ..., T}, has a present value equal to

C

(1 + ρ
m)mt

.

For example, for a standard bond, Ck = cN
m or cN

m +N , hence

P

N
=

c

m

mT∑
k=1

1

(1 + ρ
m)k

+
1

(1 + ρ
m)mT

=
c

m

1

1 + ρ
m

1− 1

(1 + ρ
m)mT

1− 1

1 + ρ
m

+
1

(1 + ρ
m)mT

=
c

ρ

[
1− 1

(1 + ρ
m)mT

]
+

1

(1 + ρ
m)mT

.

b. The kth payment is done at time k
m , hence the duration is: D =

1

P

mT∑
k=1

Ck
k
m

(1 + ρ
m)k

.

c. We have P ′(ρ) = −
mT∑
k=1

Ck
k
m

(1 + ρ
m)k+1

= − D

1 + ρ
m

P . Hence
∆P

P
∼ − D

1 + ρ
m

∆ρ.
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Remark:

The rate defined above is called the Bond Equivalent Yield (BEY). Dividing by m, we get the periodic

yield-to-maturity, ρBEY
m .

The bond equivalent yield (BEY) allows fixed-income securities whose payments are not annual to

be compared with securities with annual yields. The BEY is a calculation for restating semi-annual,

quarterly or monthly discount bond or note yields into an annual yield, and is the yield stated in the

quotations.

The rate ρ such that (1 + ρBEY
m )m = 1 + ρ is called the Effective Annual Yield.

Exercise 9.

1. The risk is that interest rates go up: in that case bond prices go down as existing bonds become less

attractive compared to newly issued bonds having a higher coupon.

2. a. The value at T − 1 of 1 + r(T − 1, T ) at time T is 1 (r(T − 1, T ) is known at T − 1),

the value at T − 2 of 1 + r(T − 2, T − 1) at time T − 1 is 1, ... continuing backward, we get the

present value at 0, which is 1 as well.

Multiplying by N , we get that the value of the FRB just after any coupon payment date is N .

Note that the FRB is equivalent to N invested at for 1 year at 0 (then at rate r(0, 1)), then N reinvested

at time 1 (rate r(1, 2)),...

b. Between 2 coupons dates: t−1 < s < t. Just before t, price is still N (as the accrued coupon is equal

to the whole coupon). No cash-flow between s and t.

Then price at s = NB(s, t)+{accrued coupon between t− 1 and s} = NB(s, t) + [s− (t− 1)]r(t− 1, t)N

(remember that the dates are in years). B(s, t) is the discount factor between s and t.

Exercise 10. 1. Slope = P ′(ρ) = −SP (ρ).

2. Taking the 1st order approximation, means that we are approximating the curve ρ 7→ P (ρ) by its

tangent at (ρ, P (ρ)). Because of the convexity of ρ 7→ P (ρ), the curve is above its tangent.

Consequence (draw the curve):

1st order only: overvalues (in absolute value) the effect of a rate increase.

undervalues the effect of a rate drop.

Ie: asymmetry of the effect of a rate increase / drop: for a same absolute variation of the rate |∆ρ|, the

variation |∆P | for a rate increase is smaller than the variation for a rate drop (while it is the same if we

look at 1st order only).

Exercise 11.

• 1st order approximation: ∆P (ρ) ∼ P ′(ρ)∆ρ, where P (ρ) =
N

(1 + ρ)T
. Then P ′(ρ) =

−NT
(1 + ρ)T+1

.

We get: ∆P (ρ) ∼ − NT

(1 + ρ)T+1
∆ρ.

N.A.: If the rate goes from 10% to 9%, ∆ρ= -0.01. P ′(ρ)∆ρ = −100×10
(1.1)11

(−0.01) = 10
(1.1)11

= 3.504939

M=C.

Then ∆P (ρ) ∼ 3, 504, 939=C.

Other method: using the formula involving the sensitivity:
∆P

P
∼ −S∆ρ where S =

D

1 + ρ
, with D the duration.

Then ∆P (ρ) ∼ −SP∆ρ which gives, as D = T : ∆P (ρ) ∼ − TN

(1 + ρ)T+1
∆ρ, same result.
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• 2nd order approximation: ∆P ∼ P ′(ρ)∆ρ+ 1
2P
′′(ρ)(∆ρ)2.

We have P ′′(ρ) =
NT (T + 1)

(1 + ρ)T+2
then P ′′(ρ)(∆ρ)2 = 100×10×11

(1.1)12
(0.01)2 = 10×10×1.1

(1.1)12
× 0.01 = 1.1

(1.1)12
.

Then

∆P ∼ 10
(1.1)11

+ 1
2

1
(1.1)11

. Note that the 2nd term of the same is 20 times smaller than the 1st one.

∆P ∼ 3, 504, 939(1 + 1
20) = 3, 680, 186=C.

• Exact computation: ∆P = new price - previous price =
100

(1 + 0.09)10
− 100

(1 + 0.1)10
= 3, 686, 752=C.

Obviously, the approximation is indeed better with the 2nd order term.

Exercise 12.

P = A
ρ . If the YTM goes from ρ to ρ′, the relative variation of price is: ∆P

P =
A
ρ′−

A
ρ

A
ρ

= ρ
ρ′ − 1.

Rate increase of 1%: ρ′ = 11% ⇒ ∆P
P = 0.1

0.11 − 1 = −9.09%.

Rate drop of 1%: ρ′ = 9% ⇒ ∆P
P = 0.1

0.09 − 1 = 11.11%.

If we want to use the approximation of the price change, we will compute the following parameters:

D = 1+ρ
ρ , S = 1

ρ , C = P ′′(ρ)
P (ρ) = 2A

ρ3
ρ
A = 2

ρ2
(with ρ = 10%, S = 10 and C = 200).

Exercise 13. 1.
T∑
t=1

C

(1 + ρ)t
+

N

(1 + ρ)T
=

T∑
t=1

C

(1 + rt)t
+

N

(1 + rT )T
then

c
T∑
t=1

1

(1 + ρ)t
+

1

(1 + ρ)T
(∗)
= c

[
1

1 + r1
+

1

(1 + r2)2
+ ...

1

(1 + rT )T

]
+

1

(1 + rT )T
.

2. Yield-to-maturity for a 0-coupon maturing at T : rT .

3. 0 < r1 < r2 < ... < rT ⇒ f(r1) > c

[
1

1 + r1
+

1

(1 + r2)2
+ ...

1

(1 + rT )T

]
+

1

(1 + rT )T
> f(rT )

ie f(r1) > f(ρ) > f(rT ). Then r1 < ρ < rT as f is a decreasing function.

4. A greater proportion of total payments comes on the shortest maturities, where the rates are lower.

Quantitative argument: equation (*) defines the yield-to-maturity ρ from the issuer’s yield curve. The

corresponding equation for any annuity of this issuer is, ρA being the yield-to-maturity of the annuity:
T∑
t=1

1

(1 + ρA)t
(∗∗)
=

1

1 + r1
+

1

(1 + r2)2
+ ...

1

(1 + rT )T
.
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