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Capital allocation

Capital allocation

Allocation problem: Investor (financial institution, loan book manager) can invest
in d investment possibilities with losses represented by random variables
L1, . . . , Ld.

◦ Objective: Determine appropriate risk capital for each investment opportunity.

1 Compute the overall risk capital ρ(L), where L =
∑d

i=1 Li and ρ is a
specified risk measure.

2 Allocate the capital ρ(L) to individual investments according to a capital
allocation principle such that:

ρ(L) =

d∑
i=1

ACi,

where ACi is the capital allocated to the investment with potential loss Li.
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Capital allocation

Set-up: Let L1, . . . , Ld be random variables on (Ω,F , P ). For any
λ = (λ1, . . . , λd) ∈ Rd, representing portfolio weights of individual investments,
we set:

L(λ) =
d∑

i=1

λiLi (note that L(1) = L).

Fix a risk measure ρ and define the associated risk-measure function:

rρ(λ) = ρ(L(λ)),

which represents the required risk capital for a position λ in the investment
possibilities.
Definition: A mapping πρ : Rd → Rd is called a per-unit capital allocation
principle if:

For all λ ∈ Rd, rρ(λ) =

d∑
i=1

λiπρ,i(λ).

Interpretation: The i-th component πρ,i(λ) of the vector πρ(λ) gives the amount
of capital allocated to one unit of Li when the overall position is L(λ). The
equality means that the overall risk capital rρ(λ) is fully allocated to the
individual portfolio positions.
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Capital allocation

Euler’s principle and examples

We restrict to risk measures that are positively homogeneous, i.e., ρ(tL) = tρ(L)
for all t > 0. This includes coherent risk measures, VaR, and the standard
deviation risk measure.

⇝ This implies that the associated risk-measure function rρ is also positively
homogeneous: rρ(tλ) = trρ(λ) for all t > 0 and λ ∈ Rd. Assuming that rρ is
differentiable on Rd, we derive Euler’s rule:

rρ(λ) =

d∑
i=1

λi
∂rρ
∂λi

(λ).

Comparing with the definition of the allocation principle, we see that the mapping
πρ : Rd → Rd is given by:

πρ,i(λ) =
∂rρ
∂λi

(λ),

which is called allocation by the gradient.
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Capital allocation

Standard deviation and covariance principle
Consider the risk measure ρSD(X) =

√
Var(X). Let Σ be the covariance matrix

of L = (L1, . . . , Ld), and note that:
Var(L(λ)) = Var(λ⊤L) = λ⊤Σλ, λ ∈ Rd.

Therefore,
rρSD(λ) =

√
λ⊤Σλ.

We can then derive
∇rρ(λ) =

Σλ

rρ(λ)
.

Thus, the allocation by the gradient is given by:

πρSD,i(λ) =
(Σλ)i
rρ(λ)

=

∑d
j=1 Cov(Li, Lj)λj

rρ(λ)
=

Cov(Li, L(λ))√
Var(L(λ))

.

For the initial portfolio L = L(1), the capital allocated to the i-th investment is

ACi =
Cov(Li, L)√

Var(L)
, i = 1, . . . , d.

This is known as the covariance principle.
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Capital allocation

Value-at-Risk
For the VaRα risk measure, the associated risk-measure function is

rVaRα
(λ) = qα(L(λ)),

where qα is the quantile function. The allocation by the gradient is given by

πVaRα,i(λ) =
∂rVaRα

∂λi
(λ) = E[Li | L(λ) = qα(L(λ))], i = 1, . . . , d.

Let us prove this result for the case where the loss distribution of
L = (L1, . . . , Ld) has a joint density. Denote by u 7→ φ(u, L2, . . . , Ld) the
conditional density of L1 given (L2, . . . , Ld).
Lemma: For any λ = (λ1, . . . , λd) ∈ Rd, with λ1 6= 0, L(λ) has density given by

fL(λ)(t) =
1

|λ1|
E

[
φ

(
t−

∑d
j=2 λjLj

λ1
, L2, . . . , Ld

)]
.

and

E[Li | L(λ) = t] =

E
[
Liφ

(
t−

∑d
j=2 λjLj

λ1
, L2, . . . , Ld

)]
E
[
φ

(
t−

∑d
j=2 λjLj

λ1
, L2, . . . , Ld

)] , i = 2, . . . , d.
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Capital allocation

Proof. (1) Consider the case λ1 > 0 We can write:

P[L(λ) ≤ t] = E[P(L(λ) ≤ t|L2, · · ·Ld)]

= E

[
P

[
L1 ≤ λ−1

1

(
t−

d∑
j=2

λjLj

)∣∣∣∣∣L2, . . . , Ld

]]

= E

[∫ λ−1
1 (t−

∑d
j=2 λjLj)

−∞
φ(u, L2, . . . , Ld)du

]

The first assertion follows by differentiating under the expectation:

fL(λ)(t) =
1

|λ1|
E

[
φ

(
λ−1
1

(
t−

d∑
j=2

λjLj

)
, L2, . . . , Ld

)]

By similar arguments, one proves that

∂

∂t
E[Li1L(λ)≤t] =

1

|λ1|
E

[
Liφ

(
λ−1
1

(
t−

d∑
j=2

λjLj

)
, L2, . . . , Ld

)]
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Capital allocation

Proof (continued): Observe that we can write:

E[Li|L(λ) = t] = lim
h→0

E[Li1t<L(λ)≤t+h]

P[t < L(λ) ≤ t+ h]
=

∂
∂tE[Li1{L(λ)≤t}]

fL(λ)(t)

provided that fL(λ)(t) > 0. The result follows by using the expressions derived in
the first assertion.
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Capital allocation

Let us now conclude how (2) follows from the above Lemma. Since L(λ) has a
continuous distribution, we have P[L(λ) ≤ qα(L(λ))] = α. By setting
k(t) = λ−1

1 (t−
∑d

j=2 λjLj), we have:

α = P[L(λ) ≤ rVaRα(L(λ))] = E

[∫ k(rVaRα (L(λ)))

−∞
φ(u, L2, . . . , Ld)du

]
.

Taking derivatives of this expression with respect to λi, for i = 2, . . . , d, yields:

0 = λ−1
1 E

[(
∂rVaRα

∂λi
(λ)− Li

)
φ(k(rVaRα

(L(λ))), L2, . . . , Ld)

]
.

This gives the required result by using Assertion (2) of the Lemma

πVaRα,i(λ) = E[Li | L(λ) = qα(L(λ))], i = 1, . . . , d.

In particular, for the initial portfolio L = L(1), we obtain the capital allocated to
the i-th investment:

ACi = E[Li | L = VaRα(L)], i = 1, . . . , d.
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Capital allocation

Expected Shortfall
For the ESα risk measure, the associated risk-measure function is:

rESα(λ) =
1

1− α

∫ 1

α

rVaRu(λ) du,

recalling that rVaRu(λ) = qu(L(λ)). By differentiating with respect to λi, and
using Assertion (2), we get:

∂rESα
∂λi

(λ) =
1

1− α

∫ 1

α

∂rVaRu

∂λi
(λ) du =

1

1− α

∫ 1

α

E[Li | L(λ) = qu(L(λ))] du.

Assuming that the density fL(λ) is strictly positive so that the distribution
function FL(λ) is invertible, we can make the change of variable
v = qu(L(λ)) = F−1

L(λ)(u) with du = fL(λ)(v)dv, and get:

∂rESα
∂λi

(λ) =
1

1− α

∫ ∞

qα(L(λ))

E[Li | L(λ) = v]fL(λ)(v) dv

=
1

1− α
E[E[Li|L(λ) ≥ qα(L(λ))]]

=
1

1− α
E [Li | L(λ) ≥ qα(L(λ))] .
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Capital allocation

In particular, for the initial portfolio L = L(1), we obtain the capital allocated to
the i-th investment possibility:

ACi = E[Li | L ≥ VaRα(L)], i = 1, . . . , d.

This is a popular allocation principle in practice, often considered preferable to
both the covariance principle and the principle based on VaR.
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Risk budgeting

Introduction to Portfolio Optimization
• Classical Optimization (Markowitz, 1952):
• Objective: Maximize expected return under a risk constraint, typically

measured by variance.
• Method: A mathematical formulation based on the mean-variance

framework.
Maximize wtµ− λwtΣw

subject to wt1 = 1, w ∈ Ω.

• Outcome: An ”optimal” portfolio w⋆, its return (w⋆)tµ and risk (w⋆)tΣw⋆;
assuming precise parameter estimates (returns µ, variances-covariances Σ).

• Challenges and Limitations:
• High sensitivity to estimation errors in expected returns and covariances.

Michaud, (1989), Chopra, V. K., & Ziemba, W. T. (1993), Meucci, A. (2005).
• Lack of explicit consideration of individual risk contributions. Maillard, S.,

Roncalli, T., & Teiletche, J. (2010).
• Limited applicability in real-world settings (e.g., regulatory constraints,

diversification goals).
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Risk budgeting

Moving Towards a Risk-Centric Approach

• Shift in Investment Objectives:
• Focus on diversification and risk management following financial crises

(dot-com, 2008).

• Emergence of new paradigms like Risk Parity and Risk Budgeting.

• Concept of Risk Budgeting:
• Objective: Build a portfolio where each asset contributes to total risk

according to a pre-defined budget.

• Methodology:
• Assign a ”risk budget” to each asset.

• Optimize portfolio weights to meet these contributions under long-only
constraints.

Noufel Frikha (noufel.frikha@univ-paris1.fr) Université Paris 1 Panthéon-Sorbonne October 2024 16 / 34



Risk budgeting

Risk Budgeting Problem
◦ Objective: In risk budgeting, we aim to allocate risk capital to different
sub-portfolios or asset classes in a way that each component contributes a fixed
proportion of the total portfolio risk.

◦ Framework: The financial market is composed of d assets whose returns are
given by the Rd-valued random variable X. A financial portfolio is given the
vector of weights u = (u1, · · · , ud) belonging to the simplex
∆d =

{
u ∈ Rd

+ : u1 + · · ·+ ud = 1
}

, then −〈u,X〉 = −
∑d

i=1 uiXi corresponds
to its loss.

Fix a risk measure ρ and define the associated risk-measure function:
rρ(y) = ρ(−〈y,X〉), y ∈ Rd

+,

which represents the required risk capital to hold the position y.

Assuming that ρ is positively homogeneous, Euler’s rule gives

rρ(y) =

d∑
i=1

yi
∂rρ
∂yi

(y), y ∈ Rd
+
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Risk budgeting

The term yi
∂rρ
∂yi

(y) is referred to as the risk contribution of asset i to the overall
portfolio risk.
◦ Risk budgeting problem: Given a vector of weights
b ∈ ∆>0

d :=
{
u ∈ (R⋆

+)
d : u1 + · · ·+ ud = 1

}
, called risk budget, find u ∈ ∆d

such that the risk contributions align with the predetermined proportions b of the
total risk.

ui
∂rρ
∂ui

(u) = birρ(u), i = 1, · · · , d.

◦ Popular Risk Measures: Risk budgeting can be applied to various risk measures:
Standard deviation (volatility),
Value-at-Risk (VaR),
Expected Shortfall (ES).

◦ References:
Course 2023-2024 in Portfolio Allocation and Asset Management, T. Roncalli.
Introduction to risk parity and budgeting, T. Roncalli.
A. R. Cetingoz & al. “Risk Budgeting portfolios: Existence and computation”
(24); T. Griveau-Billion, J.-C. Richard, and T. Roncalli. “A fast algorithm for
computing high-dimensional risk parity portfolios”(13), ...
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Risk budgeting

Characterization: Existence and uniqueness of a vector of weights that solves the
risk budgeting problem along with its characterization as the solution to a strictly
convex optimization problem.

Theorem
Let b ∈ ∆>0

d . Assume that ρ is convex and that ρ(−〈u,X〉) > 0 for all u ∈ ∆>0
d .

Let g : R+ → R be a continuously differentiable, convex and increasing function.
Let the function Γ : (R0

+)
d → R be defined by

Γg : y 7→ g(rρ(y))−
d∑

i=1

bi log yi,

There exists a unique minimizer y⋆ of the strictly convex function Γg satisfying
∇Γg(y

⋆) = 0 and
u∗ :=

y⋆∑d
i=1 y

⋆
i

solves the risk-budgeting problem. Moreover, if u is a solution to the
risk-budgeting problem then

u = u⋆.
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Risk budgeting

Step 1: Note that Γg(y) = g(rρ(y))−
∑d

i=1 bi log yi is well-defined for all
y ∈ (R∗

+)
d.

Observe also that Γg is strictly convex because g is convex and increasing, rg is
convex, and the function y 7→ −

∑d
i=1 bi log yi is strictly convex.

To prove the existence of a minimizer of Γg, for any θ ∈ ∆d
>0, we introduce the

function γg,θ : R∗
+ → R defined as:

γg,θ(λ) = Γg(λθ) = g(λrg(θ))−
d∑

i=1

bi log θi − logλ.

We note that:
limλ→0+ γg,θ(λ) = +∞
limλ→+∞ γg,θ(λ) = +∞ since g(λrρ(θ)) ≥ g(c) + g′(c)(λrρ(θ)− c) for any
c > 0 s.t. g′(c) > 0.

By continuity, there exists λ∗(θ) > 0 such that γg,θ(λ) ≥ γg,θ(λ
∗(θ)) for every

λ > 0.
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Risk budgeting

Step 2: We now show, by contradiction, that θ 7→ λ∗(θ) is bounded.
Suppose there exists a sequence (θn)n in ∆d

>0 such that λn := λ∗(θn) → +∞.

We can extract(θφ(n))n that converges to θ̄ ∈ ∆d and such that λφ(n) → +∞.
For all n, λn satisfies the first-order condition:

rρ(θφ(n))g
′(λφ(n)rρ(θφ(n)))−

1

λφ(n)
= 0 ⇔ xng

′(xn) = 1

where xn := λφ(n)rρ(θφ(n)).

Since λφ(n) → +∞ and limn rρ(θφ(n)) = rρ(θ̄) > 0, we conclude xn → +∞.
This contradicts xng

′(xn) = 1, as g is convex and increasing.

Conclusion: θ 7→ λ∗(θ) is bounded and there exists M > 0 such that λ∗(θ) ≤ M
for all θ ∈ ∆d

>0.
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Risk budgeting

Step 3: For any y ∈ (R⋆
+)

d, letting θ = y/
∑d

i=1 yi, we get

Γg(y) = γg,θ(

d∑
i=1

yi) ≥ γg,θ(λ
⋆(θ)) = Γg

( y∑d
i=1 yi

λ⋆(
y∑d

i=1 yi
)
)

Let CM := {y ∈ (R∗
+)

d |
∑d

i=1 yi ≤ M}. From the previous inequality, we deduce:
inf

y∈(R∗
+)d

Γg(y) = inf
y∈CM

Γg(y).

Now, let us consider an arbitrary vector ȳ ∈ CM and define

ϵ := min
(

min
i

ȳi,min
i

exp
(

1

bi
(g(0)− (1− bi) logM − Γg(ȳ))

))
.

For any y ∈ CM , if there exists j ∈ {1, . . . , d} such that yj < ϵ, then, by definition of ϵ,

Γg(y) = g(rρ(y))−
d∑

i=1

bi log yi ≥ g(0)−
d∑

i=1

bi log yi

≥ g(0)−
∑
i ̸=j

bi log yi − bj log ϵ ≥ g(0)− logM
∑
i ̸=j

bi − bj log ϵ

≥ g(0)− logM(1− bj)− bj log ϵ ≥ Γg(ȳ).

Setting Dϵ := [ϵ,+∞)d, we therefore have
inf

y∈CM

Γg(y) = inf
y∈CM∩Dϵ

Γg(y) = Γg(y
⋆).
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Risk budgeting

Step 4: Finally, the uniqueness of the minimizer follows from the strict convexity
of Γg. Since y∗ is an interior minimum of Γg, we have:

g′(rρ(y
∗))∂irρ(y

∗)− bi
y∗i

= 0 ⇔ y⋆i g
′(rρ(y

∗))∂irρ(y
∗) = bi for all i ∈ {1, . . . , d}.

Summing over i, Euler’s theorem on homogeneous functions gives
rρ(y

∗)g′(rρ(y
∗)) = 1, so:

y∗i ∂irρ(y
∗) = birρ(y

∗), for all i.

Thus, u∗ := y∗∑d
i=1 y∗

i

solves the risk-budgeting problem.

Noufel Frikha (noufel.frikha@univ-paris1.fr) Université Paris 1 Panthéon-Sorbonne October 2024 23 / 34



Risk budgeting

Standard deviation

◦ Volatility is a reasonable choice of risk measure, especially when the probability
distributions of asset returns do not exhibit asymmetry and/or heavy tails.

◦ Let Σ be the covariance matrix of asset returns, then rρSTD
(y) :=

√
yTΣy. Use

a gradient descent algorithm to minimize over (R∗
+)

d:

Γx2 : y 7→ (rρSTD
(y))2 −

d∑
i=1

bi log yi = yTΣy −
d∑

i=1

bi log yi.

◦ Main drawback: Asset and portfolio returns exhibit skewed and heavy-tailed
distributions. Numerous studies show that excess returns reward investors for
carrying the risk of sudden and significant losses. Therefore, to more efficiently
deal with such distributional features in portfolio management, it makes sense to
use other risk measures.
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Risk budgeting

Expected Shortfall
◦ An alternative risk measure is the ES which is known to be coherent. However,
except for elliptical distributions, the ES must be computed numerically. One
solution is to use the variational characterization of ES known as the
Rockafellar-Uryasev formula:

ESα(Z) = min
ξ∈R

E[ξ +
1

1− α
(Z − ξ)+]

so that the function ΓId writes

ΓId(y) = min
ξ∈R

E
[
ξ +

1

1− α
(−〈y,X〉 − ξ)+ −

d∑
i=1

bi log(yi).
]

Hence, solving the risk-budgeting problem boils down to solving the stochastic
optimization problem

min
(y,ξ)∈(R⋆

+)d×R
E
[
ξ +

1

1− α
(−〈y,X〉 − ξ)+ −

d∑
i=1

bi log(yi)
]
.
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Risk budgeting

◦ The above stochastic optimization problem suggests to implement a stochastic
gradient descent (SGD) algorithm based on the gradient

∂yi
E
[
ξ +

1

1− α
(−〈y,X〉 − ξ)+ −

d∑
i=1

bi log(yi)
]
= E

[ −Xi

1− α
1−⟨y,X⟩≥ξ − bi

]
∂ξE

[
ξ +

1

1− α
(−〈y,X〉 − ξ)+ −

d∑
i=1

bi log(yi)
]
= E

[
1− 1

1− α
1−⟨y,X⟩≥ξ

]
so that the (formal) SGD algorithm writesyn+1

i = yni − γn+1

(
−Xn+1

i

1−α 1−⟨yn,Xn+1⟩≥ξn − bi
yn
i

)
, i = 1, · · · d,

ξn+1 = ξn − γn+1

(
1− 1

1−α1−⟨yn,Xn+1⟩≥ξn

)
.

with (y0, ξ0) ∈ (R⋆
+)

d × R.

◦ Main drawback:
The sequence (yn, ξn)n≥0 is not guaranteed to live in (R⋆

+)
d × R!

Convergence?
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Risk budgeting

Projected SGD

◦ To circumvent the first difficulty, one may use a projected SGD:
yn+1 = Π

(
yn − γn+1

(−Xn+1

1− α
1−⟨yn,Xn+1⟩≥ξn − bi

yni

))
ξn+1 = ξn − γn+1

(
1− 1

1− α
1−⟨yn,Xn+1⟩≥ξn

)
where Π : Rd → (R0

+)
d is a projection function designed to ensure that all

elements are positive. Specifically, Π is defined to replace any negative elements
with a fixed positive value, ϵ = 10−4.

◦ But still the convergence is difficult to establish...
◦ Requires fine tuning of the learning step sequence (γn)n≥1.
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Risk budgeting

Convergence of Projected SGD

◦ The classical SA algorithm solves problem

min
x∈X

g(x) = E[G(x, Z)] (1)

where X ⊂ Rd is a nonempty bounded closed convex set and Z a random variable
from which we can easily sample, by mimicking the simplest subgradient descent
method.
◦ For chosen x1 ∈ X and a sequence γj > 0, j = 1, . . ., of stepsizes, it generates
the iterates by the formula

xj+1 := ΠX

(
xj − γj∇G(xj , Z

j)
)
, (2)

where ΠX(x) = arg minx′∈X ‖x− x′‖2 and (Zj)j≥1 is an i.i.d. sequence with the
same law as Z.

◦ Of course, the crucial question of that approach is how to choose the stepsizes
γj .
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Risk budgeting

◦ Let x̄ be an optimal solution of problem (1). Note that since the set X is
compact and g is continuous, problem (1) has an optimal solution. Note also that
the iterate xj = xj(Z[j−1]) is a function of the history Z[j−1] := (Z1, . . . , Zj−1)
of the generated random process and hence is random.

◦ Denote Aj :=
1
2‖xj − x̄‖22 and aj := E[Aj ] =

1
2E[‖xj − x̄‖22]. By using the fact

that ΠX is a contraction operator and since x̄ ∈ X and hence ΠX(x̄) = x̄, we can
write

Aj+1 =
1

2

∥∥∥ΠX

(
xj − γj∇G(xj , Z

j)
)
− x̄
∥∥∥2
2

≤ Aj +
γ2
j

2
∥∇G(xj , Z

j)∥22 − γj(xj − x̄)⊤∇G(xj , Z
j).

We also have

E[(xj − x̄)⊤∇G(xj , Z
j)] = E

{
E
[
(xj − x̄)⊤∇G(xj , Z

j)|Fj−1

]}
= E[(xj − x̄)⊤∇g(xj)]

using the fact that xj is Fj−1 measurable and Zj is independent of Fj .
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Risk budgeting

◦ Therefore, by taking expectation on both sides of the previous inequality, we
obtain

aj+1 ≤ aj − γjE[(xj − x̄)⊤∇g(xj)] +
γ2
j

2
M2, (3)

where
M2 := sup

x∈X
E[∥G(x, ξ)∥22]. (4)

⇝ We assume that the above constant M is finite.

◦ Suppose, further, that the expectation function g is strongly convex on X, i.e.,
there is a constant c > 0 such that

g(x′) ≥ g(x) + (x′ − x)⊤∇g(x) +
c

2
‖x′ − x‖22, ∀x′, x ∈ X, (5)

or equivalently

(x′ − x)⊤(∇g(x′)−∇g(x)) ≥ c‖x′ − x‖22, ∀x′, x ∈ X. (6)
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Risk budgeting

◦ Strong convexity of g implies that the minimizer x̄ is unique. By optimality of x̄,
we have that

(x− x̄)⊤∇g(x̄) ≥ 0, ∀x ∈ X. (7)
Combining (7) with (6), we obtain

E[(xj − x̄)⊤∇g(xj)] ≥ E[(xj − x̄)⊤(∇f(xj)−∇f(x̄))]

≥ cE[‖xj − x̄‖22] = 2caj .
(8)

Substituting (8) into (3), we get

aj+1 ≤ (1− 2cγj)aj +
γ2
j

2
M2. (9)
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Risk budgeting

◦ Let us take stepsizes γj =
γ
j for some constant γ > 1

2c . Then by (9), we have

aj+1 ≤
(
1− 2cγ

j

)
aj +

γ2M2

2j2
. (10)

By induction, it follows that
aj ≤ κ

j
, (11)

where
κ := max

{
γ2M2

2(2cγ − 1)
, a1

}
. (12)

◦ Suppose further that x̄ is an interior point of X and ∇g(x) is Lipschitz
continuous, i.e., there exists a constant L > 0 such that

‖∇g(x′)−∇g(x)‖2 ≤ L‖x′ − x‖2, ∀x′, x ∈ X. (13)

Then,
g(x) ≤ g(x̄) +

L

2
‖x− x̄‖22, ∀x ∈ X, (14)

and hence
E[g(xj)− g(x̄)] ≤ Laj ≤

Lκ

j
. (15)
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Risk budgeting

◦ Conclusion: Under the specified assumptions, it follows that after n iterations,
the expected error of the current solution is of order O(n−1/2), and the expected
error of the corresponding objective value is of order O(n−1), provided that
γ > 1

2c .

◦ Caution: However, this result is highly sensitive to the choice of c.
Overestimating c can lead to suboptimal convergence,
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Risk budgeting

Some difficulties of GD and SGD
• Implementing a GD or SGD scheme requires fine tuning of learning sequence
(γk)k≥1.

• Basic example: Consider the optimization problem:

Minimize
{
f(x) =

x2

10

}
, over X = [−1, 1] ⊂ R.

• Iteration Rule: of the standard GD scheme with learning rate γk = γ
k

, γ > 0.

xk+1 = xk − f ′(xk)

k
=
(
1− γ

5k

)
xk.

• Parameters: x1 = 1 and γ = 1. It holds

xn =

n−1∏
k=1

(1− 1

5k
) = e−

∑n−1
k=1

ln(1+ 1
5k−1

) > e−(0.25+
∫n−1
1

1
5t−1

dt) > 0.8n− 1
5

⇝ Slow convergence: For n = 109, error remains > 0.013.
⇝ Optimal choice: γ = 1/c = 5, yields xk = 0 in a single iteration.

Conclusion:
Properly choosing stepsize is critical to achieving efficient convergence.
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