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1 Notations and basic notions

R":={z=(x1,...,Zn,...,Ty) 2z ER, Y h=1,...,n}

r € R" and ¥ € R",
r>2T < x,>Ty, YVh=1..n
r>T<=zc>Tand x #7
T>T <2, >Th, Vh=1,..,n
e r € R" and T € R", x - T denotes the scalar product of z and 7.

e A is a matrix with m rows and n columns and B is a matrix with n
rows and [ columns, AB denotes the matrix product of A and B.

z € R" is treated as a row matrix.

e 7 denotes the transpose of z € R", 27 is treated as a column matrix.

e f is a function from X C R" to R,
f is non-decreasing (or weakly increasing) on X if for all = and

Tin X,
r<T= f(x) < f(T)

f is increasing on X if for all x and 7 in X,
f is strictly increasing on X if for all z and 7 in X,
r<T= f(x) < f(T)

f strictly increasing on X = f increasing on X

f strictly increasing on X = f non-decreasing (or weakly increasing) on X



e X C R"is an open set, f is a function from X to R and =z € X,
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1.1 Norms
Definition 1 (Norm) A norm on R™ is a function:
-]z e R" = [lz]| € R
that satisfies the following four properties.
1. VxeR", ||z|| >0,
2. VxeR", ||lz|| =0 if and only if v =0,
3. Vx eR" andVteR, ||tx|| = |t]|(|]x]]),

4. VreR" andVTeR", ||lz+7| <|lz|| + ||Z]|.

Proposition 2 Let || - || be a norm on R™, the function defined below is a
distance on R":

V (z,7) € R" x R", d(z,T) = ||z — ||

Some basic norms on R™:

i) |||l : R = R, defined by [|z|l; =Y |z,
h=1
i) || - ||z : R" — R, defined by |[z[]> = | > _(x4)*,
h=1
iii) || - ||oo : R™ = R, defined by ||z||ee = max{|zy|:h=1,...,n}.

Theorem 3 All the norms on R™ are equivalent.*

Two norms || - ||, and || - ||, on R™ are equivalent if there exist a > 0 and 8 > 0 such
that [|z[|a < alfz[y and ||z|[, < Bl[2||a-



1.2 Continuity

f is a function from X C R" to R.

Definition 4 (Continuous function) f is continuous at T € X if

lim f(z) = f(7)

T—T

f 1s continuous on X if f is continuous at every point T € X.

Exercise 5

1. f is continuous at T € X if and only if for every open ball J of center
f (%) there exists an open ball B of center T such that f(BN X) C J.

2. f is continuous at * € X if and only if for every € > 0 there exists
9 > 0 such that ||z —Z|| < dand z € X = |f(z) — f(T)| < e.

Proposition 6 (Sequentially continuous function) f is continuous at
T € X if and only if f is sequentially continuous at T, that is, for every
sequence (Ty)nen C X such that x, — T, we have that

f(xn) = f(7)

1.3 Differentiability

X C R"is an open set, f is a function from X to R.

Definition 7 (Differentiable function) f is differentiable at T € X if
1. all the partial derivatives of f at T exist,

2. there exists a function Ez defined in some open ball B(0,e) C R™ such
that for every u € B(0,¢),

f@+u) = f(Z) + Df(T) - u+ [Jul| Ez(u)

where limEz(u) =0

u—0

f s differentiable on X if f is differentiable at every point T € X.
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Exercise 8 If f is differentiable at @, then f is continuous at 7.

Definition 9 (Directional derivative) Let v € R™, v # 0. The direc-
tional derivative D, f(T) of f at T € X in the direction v is defined as

o FE+t0) — @)

t—0+ t

if this limit exists and it is finite.

Proposition 10 (Differentiable function/Directional derivative) If f
is differentiable at T € X, then for every v € R™ with v # 0,

D, f(z) = Df(z) - v

1.4 Compactness

X is a subset of R™.

Proposition 11 (Compact set/Subsequences) X is compact if and only
if for every sequence (x,)nen C X there exists a subsequence (x,, )ken of the
sequence (Tp)nen such that (z,, )ren converges to some point T € X .2

Proposition 12 (Compact set) X is compact if and only if it is closed
and bounded.

Definition 13 (Closed set) X is closed if its complement C(X) := R"\ X
1S open.

Proposition 14 (Sequentially closed) X is closed if and only if it is se-
quentially closed, that is, for every sequence (x,)neny C X such that x, — T,
we have

TeX

Definition 15 (Bounded set) X is bounded if it is included in some ball,
that is, there exists € > 0 such that for all x € X, ||z|| < e.

2Let (zn)nen be a sequence and (ni)ren be a strictly increasing sequence of natural
numbers. The composed sequence (z,, )ken is a subsequence of the sequence (zp,)nen-.



2 Extreme Value Theorem

Theorem 16 (Extreme Value Theorem/Weierstrass Theorem) Let f
be a function from X C R™ to R. If X is a non-empty compact set and f is
continuous on X, then

e Jux* € X such that f(x*) > f(z) for allx € X, and
o Ju™ € X such that f(z*) < f(x) for al z € X.



3 Constrained Optimization Problems

In this section, we provide necessary and sufficient conditions in terms of
first order conditions for solving a maximization problem with constraints.
In Subsection 3.1, we focus on the case of inequality constraints. In Subsec-
tion 3.2, we extend the analysis to the case of both equality and inequality
constraints.

3.1 The case of inequality constraints: Karush—Kuhn—
Tucker Theorems

In this subsection, we assume that C' C R" is convex and open, and that
the following functions f and g; with j =1, ...,m are differentiable on C.
f:xeCCR" — f(z) € R and
gi:xr €CCR" —yg(z)eR, Vji=1,...,m

Maximization problem

max f(x)
rxel (1)
subject to  gj(x) >0,Vji=1,..m

where f is the objective function, and g; with j = 1,...,m are the con-
straint functions.

The Karush—Kuhn—Tucker conditions associated with problem (1)
are given below

Df(x) + Y AjDg;(x) =0
j=1
A >0, Vi=1,...m (2)

)\jgj(fﬂ) = 0, VJ = 1, ., m
gi(x)>0,Vji=1,.,m

\

where for every j = 1,...,m, \; € R is called Lagrange multiplier associa-
ted with the inequality constraint g;.



Definition 17 Let 2* € C, we say that the constraint j is binding at x* if
gj(z*) = 0. We denote

1. J(x*) the set of all binding constraints at x*, that is
J(z*):={j=1,..,m:gj(z") =0}
2. m* < 'm the number of elements of J(x*) and
3. g% :=(gj)jeiz) the following mapping
g rw € CCR" — g (2) = (g;(2))jes) € R™

Theorem 18 (Karush—-Kuhn-Tucker necessary conditions) Let z* be

a solution to problem (1). Assume that one of the following conditions is
satisfied.

1. Forallj=1,...,m, g; is a linear or affine function.
2. Slater’s Condition :

o forallj =1,..,m, g; is a concave function or g; is a quasi-
concave function with Dg;j(x) # 0 for all z € C, and

o there exists T € C such that g;(T) > 0 for all j =1,...,m.
3. Rank Condition : rank Dg*(z*) = m* <n

Then, there exists \* = (A], ..., AL, ..., Ar)) € RY such that (x*, \*) satisfies

RERAVE

the Karush—-Kuhn—Tucker Conditions (2).

Theorem 19 (Karush—Kuhn—Tucker sufficient conditions) Suppose that
there exists \* = (A}, ..., AS, ..., Ay,) € RT such that (2, \*) € CxRT satisfies
the Karush—Kuhn—Tucker Conditions (2). Assume that

1. f is a concave function or [ is a quasi-concave function with

Df(z) #0 for all x € C, and
2. g; is a quasi-concave function for all j =1,...,m.

Then, x* is a solution to problem (1).
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3.2 The case of both equality and inequality constraints:
generalized Karush—Kuhn—Tucker Theorems

In this subsection, we assume that C' C R" is convex and open, and that
the following functions f, g; with j = 1,...,m, and h; with k = 1,...,¢ are
differentiable on C.
fixeCCR" — f(x) eR
gt €eCCR" —gj(x)eR, Vj=1,..,mand
hiy 2 € CCR" — hy(x) eR, VE=1,..,¢

Maximization problem

max f(z)
xel

: (3)
subject to { (@) =0, Vh=1,..10

where f is the objective function, g; with j = 1,...,m are the inequality
constraint functions, and hy with & = 1,...,¢ are the equality constraint
functions.

Remark 20 We remark that all the results given below come from the sim-
ple observation that any equality constraint can be written as two inequality
constraints. More precisely,

hi(z) =0 <= hg(x) >0 and — hg(x) >0

The generalized Karush—Kuhn—Tucker conditions associated with
problem (3) are given below

4 m é
Df(x)+ Y ADg;(x) + Y puDhy(z) =0
j=1 k=1
=20, Vyi=1,..m (4)
)\jgj('x) = 0, VJ = 1, .., m
| h(z) =0, VEk=1,..¢

11



where for every j = 1,...,m, \; € R is the Lagrange multiplier associated
with the inequality constraint g; and for every & = 1,...,¢, pur € R is the
Lagrange multiplier associated with the equality constraint hy.

Theorem 21 (Karush—Kuhn—Tucker necessary conditions) Let z* be

a solution to problem (8). Assume that one of the following conditions is
satisfied.

1. For all j = 1,...,m and for all k = 1,...,¢, g; and h; are linear or
affine functions.

2 Rank Condition : rank | 20 ) | Z e 40 <n
Dh(x*)

where the mapping g* is defined by point 3 of Definition 17 and h
denotes the following mapping

h:xeCCR" — hz) = (hi(x),..., (), ..., he()) € R

Then, there exist \* = (A}, ..., N5, ..., A5) € R and p* = (u3, ..., jig - 1) €

.oy j’

R such that (x*, \*, u*) satisfies the Karush—Kuhn—Tucker Conditions (4).

Theorem 22 (Karush—Kuhn—Tucker sufficient conditions) Suppose that

there exist \* = (A],.., A5, ..., An) € R and p* = (p3, .., figs s 11y) € R¢

such that (z*, \*, 1*) € C x RT x R satisfies the Karush-Kuhn-Tucker Con-
ditions (4). Assume that

1. f is a concave function or [ is a quasi-concave function with

Df(z) #0 forallx € C,
2. g; 1is a quasi-concave function for all j =1,...,m, and
3. hy are linear or affine functions for allk =1, ..., 0.

Then, x* is a solution to problem (3).
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4 The Implicit Function Theorem

V CR™ and W C R™ are open sets, F' := (Fy,...

from V' x W to R™ and (v*,w*) € V x W.

D, F(v*,w*) :=

oFy, ,
8_111( ;W)

0F,

8’Uh

OF;
(%h

(v, w)

(v*, w*)

oF,

8Uh

(v*, w”)

.., F,) is a mapping

- nxn

denotes the partial Jacobian matrix of F' with respect to v at (v*, w*),

Do F(

or -
8_@01( ,w)

OF;
awk

(v,

w*)

oF,
Ow,,

(v*, w*)

oF,

(v*, w*)

Ow,,

oF,

(v*, w*)

oWy,

- nXxm

denotes the partial Jacobian matrix of F' with respect to w at (v*, w*).
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Theorem 23 (The Implicit Function Theorem) Let V C R" and W C
R™ be open sets. Let ' be a mapping from V' x W to R"™. Assume that

e Fis C! (i.e., F is continuously differentiable 3),
o (v,w*) eV xW,

F(v*,w*) =0 and rank D, F(v",w*) =n

Then, there exist open sets V* C V., W* C W containing v* and w*, respec-
tively, and a C! mapping f from W* to V* such that

(v,w) € V' x W* and F(v,w) =0 < v = f(w)
(so that, in particular v* = f(w*)), and
Df(w*) = —[D,F(v*, w*)] 'Dy, F(v*, w*)

or equivalently, the directional derivative Av = D f(w*)Aw is the unique
solution to the system of linear equations

D,F(v*,w*)Av + D, F(v*,w*)Aw = 0

(given the direction Aw # 0).

3F is continuously differentiable if all the first order partial derivatives exist and are
continuous.
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5 Continuous correspondences

In this section S is a subset of R™, T is a compact subset of R”, and ¢ is a
correspondence from S to T.

Notice that if the set T" is not compact, one may still be able to replace T’
by some compact set without altering the problem, and then use the results
below.

Definition 24 (Upper semicontinuity) The correspondence ¢ is upper
semicontinuous at v € S if for any sequence (V", w")nen such that (v, w"™) €
S x p(v™) for everyn € N and (v, w™) — (U,W), then w € ¢(v).

Definition 25 (Lower semicontinuity) The correspondence ¢ is lower semi-
continuous at v € S if for any sequence (V")peny C S such that V" — 7,

if w € ¢(v), then there exists a sequence (W")nen Such that w™ € ¢(v™)
for every n € N and w™ — w.

Definition 26 (Continuity) The correspondence ¢ is continuous at T € S
iof it is upper and lower semicontinuous at v.

Remark 27 Assume that for every v € S, ¢(v) is non-empty and single-
valued (i.e., ¢ is a function). Then,

1. the definition of lower semicontinuity at v € S is obviously equivalent
to the definition of sequential continuity at v for a function,

2. one can prove that, because of the compactness of T', the definition of
upper semicontinuity at v € S is equivalent to the definition of sequen-
tial continuity at v for a function.

Let f be a function from S x T to R. Given v € S, consider the problem
of maximizing f(v,-) over the set ¢(v). Denote u(v) C T the set of solutions
of this problem, and g(v) the value of the maximum of f(v,-) on ¢(v).

Theorem 28 (Berge’s Theorem) If the function f is continuous on S X
T, and if the correspondence ¢ is continuous at v € S, then the correspon-
dence p s upper semicontinuous at v, and g is continuous at v.

15



6 Fixed Point Theorems

Theorem 29 (Brouwer’s Fixed Point Theorem) If S is a non-empty,
compact, convex subset of R™, and if f is a continuous function from S to
S, then f has a fixved point, i.e. there exists p* € S such that p* = f(p*).

Theorem 30 (Kakutani’s Fixed Point Theorem) If S is a non-empty,
compact, convex subset of R™, and if ¢ is an upper semicontinuous corre-
spondence from S to S such that for allv € S the set ¢(v) is non-empty and
convez, then ¢ has a fized point, i.e. there exists v* € S such that v* € ¢(v*).

16



7 Regular Values and Transversality

The theory of general economic equilibrium from a differentiable prospective
is based on results from differential topology. The following results, as well

as generalizations on these issues, can be found for instance in 7, Mas-Colell
(1985) and Villanacci et al. (2002).

M and N are two C" manifolds of dimensions m and n respectively,
f:M — N is a C" mapping.

Definition 31 (Regular Value) y € N is a regular value for f if for every
& e f1(y), the differential mapping D f(£¥) is onto.

Theorem 32 (Regular Value Theorem) Let M, N be C" manifolds of
dimensions m and n, respectively. Let f : M — N be a C" function. Assume
r > max{m —n,0}. Ify € N is a reqular value for f, then

1dfm <n, f7(y) =0,

2. if m > n, either f~'(y) = 0, or f~'(y) is an (m — n)-dimensional
submanifold of M.

Corollary 33 Let M, N be C" manifolds of the same dimension. Let f :
M — N be a C" function. Assume r > 1. Let y € N a reqular value for f

such that f~(y) is non-empty and compact. Then, f~1(y) is a finite subset
of M.

The following results is a consequence of Sard’s Theorem for manifolds.

Theorem 34 (Transversality Theorem) Let M, Q and N be C" mani-
folds of dimensions m, p and n, respectively. Let f : M x Q — N be a C"
function. Assume r > max{m—mn,0}. Ify € N is a reqular value for f, then
there exists a full measure subset Q0* of Q0 such that for any w € Q*, y € N
1s a reqular value for f,,, where

fo: &€ M = fu(§) = f(§w) €N

Definition 35 Let (X, d) and (Y,d') be two metric spaces. A function w :
X — Y s proper if it is continuous and one among the following conditions
holds true.

17



1. 7 is closed and 7= (y) is compact for each y €Y,
2. if K is a compact subset of Y, then 7= 1(K) is a compact subset of X,

3. if (2™)nen 18 a sequence in X such that (m(x™))pen converges in'Y, then
(™) nen has a converging subsequence in X .

The conditions above are equivalent.

18



8 Homotopy Theorem

Theorem 36 (Homotopy Theorem) Let M and N be C* manifolds of
the same dimension contained in euclidean spaces. Let y € N and f,q :
M — N be two functions such that

1. f 1is continuous,
2. g is Ct, y is a reqular value of g and #g~'(y) is odd.

Let H be a continuous homotopy from g to f such that H=*(y) is compact.
Then, f~'(y) is compact and f~(y) # 0.

19



9 Appendix: Concavity and Quasi-concavity

In this section, we assume that C' is a convex subset of R” and f is a function
from C' to R.

9.1 Concavity

Definition 37 (Concave function) f is concave if for all t € [0,1] and
for all x and T in C,

flte+ (1 =8)7) > tf(zx) + (1 - 1) f(2)
Proposition 38 f is concave if and only if the set
{(z,a) e O xR: f(z) = a}
is a convexr subset of R"™ (the set above is called hypograph of f).

Proposition 39 C' is open and [ is differentiable on C. f is concave if
and only if for all x and T in C,

f(@) < f(@)+Df(@) - (z —7)

Proposition 40 C' is open and f is twice continuously differentiable
on C.* f is concave if and only if for all v € C the Hessian matriz D?f(x)
158 negative semidefinite, that is for all x € C

UDQf(.CE)UT <0,VveR"

Definition 41 (Strictly concave function) f is strictly concave if for all
t €]0,1[ and for all x and T in C with x # T,

flx+ (1 —=0)7) > tf(x)+ (1 —1t)f(T)

Proposition 42 C' is open and f is differentiable on C. f is strictly
concave if and only if for all x and T in C' with © # 7,

flz) < f(x)+Df () (z —7T)

4f is twice continuously differentiable if all the second order partial derivatives exist
and are continuous. A very useful property of a twice continuously differentiable function
is that its Hessian matrix is a symmetric matrix.

20



Proposition 43 C' is open and f is twice continuously differentiable
on C. If for all x € C the Hessian matriz D?f(z) is negative definite, that
is for all x € C

vD?f(z)v” <0, Vo eR", v#0

then f s strictly concave.

9.2 Quasi-concavity

Definition 44 (Quasi-concave function) f is quasi-concave if and only
iof for all a € R the set
{zeC: flx) > a}

is a convez subset of R™ (the set above is called upper contour set of f at ).

Proposition 45 f is quasi-concave if and only if for allt € [0, 1] and for
all x and T in C,

[tz + (1= 1)7) = min{f(z), f(7)}

Proposition 46 C' is open and f is differentiable on C. f is quasi-
concave tf and only if for all x and T in C,

f(2) > f(@) = DF(@)- (@ —7) > 0

Proposition 47 C' is open and f is differentiable on C. If f is quasi-
concave and Df(x) # 0 for all x € C, then for all x and T in C with x # T,

f(@) > f(T) = Df() (t—7) >0

Proposition 48 C' is open and f is twice continuously differentiable
on C. If f is quasi-concave, then for all x € C' the Hessian matriz D*f(z)
is negative semidefinite on Ker Df(x), that is for all x € C

veER" and Df(x) -v=0= vD*f(z)v’ <0

Definition 49 (Strictly quasi-concave function) f is strictly quasi-concave

if and only if for all t €]0,1[ and for all x and T in C' with x # T,

fltr+ (1 =)7) > min{ f(z), f(7)}

21



Proposition 50 C' is open and f is differentiable on C.
1. If for all x and T in C with x # T,
flz) > f(Z) = Df(@) - (x —7) >0
then f is strictly quasi-concave.

2. If f is strictly quasi-concave and D f(x) # 0 for all x € C, then for all
x and T in C with x # 7,

f(z) = f(7) = D) - (x—7) > 0

Proposition 51 C' is open and f is twice continuously differentiable
on C. If for all x € C the Hessian matriz D f(z) is negative definite on
Ker Df(x), that is for all x € C

vER™ v#0 and Df(z) -v=0= vD*f(x)v’ <0
then f s strictly quasi-concave.

A function which satisfies the property stated in Proposition 51 is called
differentiably strictly quasi-concave. This assumption is often used in Con-
sumer Theory. Note that the definition of differentiably strictly quasi-concave
function is not the same that f is strictly quasi-concave plus f is differen-
tiable.

Remark 52 We remark that

f linear or affine = f concave = f strictly concave

Y 4
f quasi-concave < f strictly quasi-concave
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