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Logistics

m Midterm +Final Exam + Attendance.

m Problem set and recommended readings at the end of the
class.

m Main reference for the class: Mas-Colell, Whinston and
Green (MWG) Micro-economic Theory, Oxford University
Press.

m timetable
m online learning resources


https://docs.google.com/spreadsheets/d/1tlxzrFqU8sGh6Z1wV7nMDT8_dCvZNtG251IvOjioWGM
https://cours.univ-paris1.fr/course/view.php?id=34170

Outline of the course

Introduce the basics of neoclassical economic models:

m A mathematical model of the economic environment.

m Two actors (at most): consumers and producers.

m Three types of actions/interactions: consumption,
production, exchange.

m Rational individual choices represented as solutions to
optimization problems.

m Interactions between individuals through market
institutions: general equilibrium



Lecture 1: commodities and preferences

m Objective: introduce the building blocks for the
representation of consumers and producers’ choices.

m References: MWG 1A, 1B, 2A, 2B, 2C, 3B.



Commodities

m A finite number of goods and services / =1,---Lis
considered given.

m These goods and services are referred to as commodities.
m Commodities are characterized by their nature/essence but
possibly also by their date, place and conditions (state of

nature) of availability.
m Space, time and uncertainty are mostly implicit in the first

part of the class (uncertainty discussed at the end of the
class).

m However time and uncertainty are key in financial
economics.



Consumption bundles and consumption set

m Commodities can be consumed/produced in fractional/real
quantities, i.e a quantity of good ¢ consumed/produced is
represented by a real number x; € R.

m A commodity vector, used e.g. to represent the
consumption bundle of a consumer, is represented by a
vector of the form x = (xq,--- , x.) € RE.

m There are constraints (physical, cultural, legal,...) on the
consumption bundles a consumer can actually consume .

m The consumptions set X c R of a consumer is the set of
consumption bundles, the consumer can actually consume.

m In general, consumptions sets are assumed to be convex,
iex,ye X=vixel0, 1] Xx+(1 -y e X.

m In the following, we assume for sake of simplicity X = Ri
(Most results hold in a more general setting, provided the
consumption set is convex).



Preference Relations

m Preferences/tastes of consumers are represented by
binary "preference" relations on the consumption set X.
m Namely, given consumption bundles x,y € X and a

preference relation -, one has x = y if x is at least as
good as y (preferred or indifferent).



Example of preference relations

The following are rational preference relations over a
consumption set X = Rf..

m Linear preferences assume that each commodity 7 is

assigned a non-negative weight a, and commaodity bundles
are compared through weighted sums. Namely, x =, y if
and only if S5, ax; > Srq ays

Leontieff preferences are determined by the commodity
that is consumed in minimal amount, i.e. X ~Zjeon ¥ if and
only if min(xq, -+, x.) > min(y, -+, y.)-

Lexicographic preferences assume that commodities are
ordered by decreasing importance and thus commodity
bundles are ordered in a dictionary-like manner: given
x#yeX, letts=min{¢ c{1,---,L} | X # ye} then one
has x >ex ¥ if Xp > Yo @and y -jgx X Otherwise.



Graphical Representations of preferences

Given a preference relation =~ on a consumption set X, and a
consumption bundle x € X

m The indifference set (curve) of x is the set of bundles that
are indifferent to x, i.e.

I ={y ex|y ~x}

m The upper contour set of x is the set of bundles that are
preferred to x, i.e.

U :={y ex|yz x}

m The lower contour set of x is the set of bundles that x is
preferred to, i.e.

Ly:={yex|xzy}



Auxiliary relations

Given a preference relation =~ on a consumption set X, and a
consumption bundle x € X
m To a preference relation —, one can associate:
m The strict preference relation - defined by x = yif x = y

and y £x.
m The indifference relation ~ defined by x ~ y if x =~ y and

y =X



Reminder: properties of relations

A binary relation R on a set E is said to be:
m Complete if for all x, y € E, either xRy or yRx.

m Transitive if for all x,y,z € X, if x ;7 y and y 77 z then
X7z

m Reflexive if for all x € E, xRx.
m Irreflexive if for all x € E, =(xRx).
m Symmetric if for all x,y € E, one has xRy < yRX.

m An equivalence relation if it is reflexive, transitive and
symmetric.



Rational preferences

m Throughout, we shall assume that preferences are
transitive and complete.

m Such preferences are called rational

If - is a rational preference relation, then
> Is reflexive and thus a complete preorder

~ Is reflexive, transitive and symmetric, i.e. an equivalence
relation

~ Is irreflexive and transitive.
Ifx - yandy - zthen x - z.



Discussion of transitivity

m Transitivity:
m Just perceptible differences.
m Condorcet paradox (social preferences, see next slide)
m Framing (Khaneman and Tversky 1984, see next slide)



Framing effects

Another potential problem arises when the manner in which alternatives are presented
matters for choice. This is known as the framing problem. Consider the following example,
paraphrased from Kahneman and Tversky (1984):

Imagine that you are about to purchase a stereo for 125 dollars and a calculator for 15
dollars. The salesman tells you that the calculator is on sale for 5 dollars less at the other
branch of the store, located 20 minutes away. The stereo is the same price there. Would
you make the trip to the other store?

It turns out that the fraction of respondents saying that they would travel to the other store
for the 5 dollar discount is much higher than the fraction who say they would travel when the
question is changed so that the S dollar saving is on the stereo. This is so even though the
ultimate saving obtained by incurring the inconvenience of travel is the same in both

cases.? Indeed, we would cxpect indifference to be the response to the following question:

Because of a stockout you must travel to the other store to get the two items, but you will
receive 5 dollars off on either item as compensation. Do you care on which item this 5
dollar rebate is given?

If so, however, the individual violates transitivity. To see this, denote

x = Travel to the other store and get a 5 dollar discount on the calculator.
Travel to the other store and get a 5 dollar discount on the stereo.
Buy both items at the first store.

The first two choices say that x > z and z > y, but the last choice reveals x ~ y. Many problems
of framing arise when individuals are faced with choices between alternatives that have
uncertain outcomes (the subject of Chapter 6). Kahneman and Tversky (1984) provide a
number of other interesting examples.



Condorcet paradox and social choice

m Three alternatives A, B, C.
m Agent1:A>=B>C
m Agent2: B>~ C > A
m Agent3:C>~A>-B

m One can always find a majority of agents against any given
choice: social preferences can hardly be defined.

m Arrow impossibility theorem: generic impossibility to
aggregate individual preference into a (transitive) social
preference (unless aggregation rule is dictatorial).



Monotonicity properties of preferences

A preference relation 7> on X = R is said to be?

m Monotone if for all x,y € X one has: y > x = y = x.
m Strongly monotone if for all x, y € X one has:
[y >xAy#x]=y>x.
m Locally non-satiated if for all x € X and all e > 0 there
exists y € X such that ||y — x|| < eandy => x

Remark
Strong Monotonicity = Monotonicity = Local Nonsatiation.

2Given two vector x, y € RL, one writes x > y (resp x > y) if and only if for
all ¢ = 1,--- ,LXg > Ve (resp. X¢ Zyg)



Convexity properties of preferences

A preference relation 7 on X = RL is said to be
m convex ifforall x,y,z € X one has:

VZxANzzx]=VAe0,1]Ay+(1-XN)zzx
m strictly convex if for all x, y,z € X such that y # z one has:

VzxANzzx]=VA€)0,1[Ay+(1—-X)z>x.



Discussion of convexity

m Convexity = Taste for diversification.

m Convexity = Diminishing marginal rates of substitution: it
takes increasingly larger amount of one commaodity
(bundle) to compensate for losses of another:

m Assume 77 strictly convex and x, y € X such that x +§ ~ x
(think 06 = a — b).

m Onehas x+¢ = %(x+26)+%x.

m One must have x > x + 26 as otherwise one would have
X+ 4§ = X.



Continuity or preferences

Definition

A preference relation 77 on X = Ri is said to be continuous if
for every pair of converging sequences

(Xn)nenrs (Vn)nenr € (REYN such that for alln € N, x, = yn, one
has limp_ o0 Xn 22 My 100 Yn



Problem set

m Exercises C1, C2, C6, C7, C8, proofs of proposition on
slide 12 and Remark on slide 16.

m Reading list for next class: MWG 1A-B, 2A-C, 3A-C.



Lecture 2 Utility functions

m Objectives: Introduce the notion of utility function and the
utility maximization problem of the consumer

m References: MWG 1B, 3C,



Utility function

m A natural way to represent preferences is to “measure”
consumption bundles, i.e. to assign a numerical value to
bundles and compare them on this basis.

A utility function on X is a mapping from X to R.

m One can associate to an utility functionu : X - R a
preference relation -, on X by letting by x -, y if and only
ifu(x) > u(y).

m Conversely, given a preference relation -, one says if is
represented by the utility function u if x 77 y < u(x) > u(y)




Examples of utility function

m Linear utility functions of the form
u(xq, - ,x) =S5 aix, where a; € Ry
m Leontieff utility functions of the form
U(X1 R ,XL) = min(a1 X1, ,aLXL) where a; € Ryt
m Cobb-Douglas utility functions of the form
u(xy,---,x)) =14 X% where a € R, and 35_, a, = 1

N.B. Graphical representations.



C.E.S Utility functions

m A Constant Elasticity of Substitution (C.E.S) utility function is of the form

L
u(xa, - x) =D ax(]”
=1

where a; € R4, 0 € Rand o := 1/(1-¢) is the elasticity of substitution.
m If 6 = 1, the utility function is linear.

m As 0 tends towards 0, C.E.S tends towards Cobb-Douglas, namely
limo—o[> 5, aixf]" = [T5_, x5

m As 0 tends towards —oo, C.E.S tends towards Leontieff, namely
limo— —oo[35_, @ XP1V° = min(asx, - - -, axt)



From CES to Cobb-Douglas

m Proof in the case of 2 goods, we search for
lim (a1 x{ + apx3)"°
6—0

m Taking the log, we consider

L = lim log[(a;x{ + a2x5)"]
0—0

o1
L= lim - log[(a X{ + ax3)]
m Using LHobpital’s rule (with respect to 6) and the fact that
aix! = a;e?'°9(%) this yields:

[~ iim & x{log(x1) + axx5 log(x2)

6=0 (a1x] + ax3)




From CES to Cobb-Douglas

m From , )
im 81X log(x1) + axx5 log(x2)

L= 0 0
0—0 (81 X1 + 32X2)

m One gets
_ log(x{" x5?)
N (31 + 32)
which ends the proof consideirng a; + a» = 1.



From CES to Leontieff

m Proof in the case of 2 goods, we search for

lim (aix? + abx5)""
0—+o00
m Taking the log, we consider

L= lim log[(aix{ + a&x3)"]
0—+o0

, 1
L= lim —log[(afx{ + a;xz)]

m Using LHopital’s rule (with respect to ) and the fact that
alx? = e?109(a) this yields:

L~ iim ajx? log(asxy) + asxs log(asxz)
TR )




From CES to Leontieff I

m From

L~ iim aix{log(asxi) + ax5 log(axxo)
W )
m Assuming wlog that a; x; < a»x2, we get, by dividing the
numerator and denominator by afx? :

0,0

ajx.
log(a1x1) + 22 log(azx2)

ajx

L= lim y
6——+o00 32X2
(1+-55)

ai Xy

9,0
, apx.

B As a1 xy < apx2, we have limg_, ;. a"x% 0, so that:
1X4

L =log(arx1)

which ends the proof.



Ordinal and cardinal properties

Remark

Utility function representing preferences are not unique. In fact
for any increasing function f : R — R, u and f o u represent the
same preferences.

m Example of useful transformation: from multiplicative
(Cobb-Douglas) u(x1,x2) = x?xg ~“ 1o log-linear utility
functions log ou(x1, X2) = alog(xq) + (1 — a) log(x2).

m A property that is invariant to a monotone transformation of
the utility function is said to be ordinal. Example: “being
preferred to".

m A property that depends on the specific utility function is
said to be cardinal. Example: “yielding double the utility of".



Existence of a utility representation

A preference relation can be represented by a utility function
only if it is rational.

m Remark: not all rational preferences can be represented by
a utility function: the lexicographic preference gives a
counter-example.

m |dea of the proof: otherwise one can construct a monotonic
mapping from R to Q.
m Namely,
m for every x € R, there exists g(x) € Q such that
u(x,1) < q(x) < u(x,2).
m one necessarily has also x > y = q(x) > q(y).



Utility representation theorem

Definition
A preference relation i on X = RL s said to be continuous if
for every pair of converging sequences

(Xn)nenrs (Vn)nenr € (REYN such that for alln € N, x, = yn, one
has limp_ 100 Xn 2= liMp_ 400 Y

Theorem (Utility representation Theorem)

A preference relation that is rational and continuous can be
represented by a continuous utility function.



Sketch of the proof of the utility representation
Theorem

Case of a monotonous, continuous, transitive and complete
relation.
mlete=(1,---,1) eREL.
m For every x € RL, there exists a(x) € R such that
X ~ a(x)e (using continuity and monotonicity, not true in
general).
m The mapping « represents the preferences and it is
continuous.



Basic properties of utility functions

m A utility function is locally non satiated (resp. monotonic,
strongly monotonic) if the associated preference relation is
non satiated (resp. monotonic, strongly monotonic).
Namely

m Monotone if for all x,y € X one has: y > x = u(y) > u(x).
m Strongly monotone if for all x, y € X one has:
[y = xny#x] = u(y) > u(x).
m Locally non-satiated if for all x € X and all ¢ > 0 there exists
y € X such that ||y — x|| < e and u(y) > u(x)



Basic properties of utility functions

m A utility function is continuous if and only the preference
relation -, is continuous.

m The preference relation 7, is convex if and only if u is
quasi-convave, i.e:

Vx,y € XVA € [0,1] u(Ax + (1 = A)y) > min(u(x), u(y))

m The preference relation -, is strictly convex if and only if u
is strictly quasi-convave, i.e:

Vx,y € XVYA€]0, 1 u(Ax + (1 — A)y) > min(u(x), u(y))



Problem set

m Utility: C4, C5, C13 (uptod), C16
m Proof of limit-case for CES functions.



Lecture 3 Utility maximization and consumer choice

m Objectives: Introduce the notion of utility function and the
utility maximization problem of the consumer

m References: MWG 2D, 3D



Prices

m We consider the behavior of consumers within a complete
system of markets .

m Namely, there is a publicly posted price for each
commodity and the consumer does not have an effect on
the price (price-taking behavior).

m Formally, there exists a price vector p = (py,--- ,pL) € RL.



Budget set

We consider the behavior of a consumer with given utility
function v and budget w € R, facing a price vector

p € RL/{0}.

Definition

The budget set of a consumer with budget w facing a price p is
the set of consumption bundles that the consumer can afford
given this budget and the price, namely

B(p,w):={xeX|p-x<w}

N.B. Graphical representation of the budget set with two
commodities.



Properties of the budget set

Letp € R: /{0}, and w > 0, one has:
B(p, w) is a non-empty, closed and convex subset of R-
B(p, w) is bounded if p > 0.
Forallt € R%, B(tp, tw) = B(p, w).




The consumer’s problem

m We consider the behavior of a consumer with given utility
function v and budget w € R, facing a price vector
p € L /{0}.

m The consumer is “rational” in the sense that he selects the
optimal choice among the alternative he faces.

m In our context, he chooses a consumption bundle in his
budget set maximising his utility, that is a solution of the
optimization problem:

max u(x)
Pp,w) = st p-x<w

x>0



The consumer’s problem I

m The consumer/ utility maximization problem (UMP):

max u(x)
P(p,w) = st p-x<w

x>0

m The set of solutions of P(p, w), that we denote by d(p, w)
is called the Walrasian demand correspondence. The
value v(p, w) of the problem P(p, w), i.e the value u(x) for
x € d(p, w), is called the indirect utility function.

m Remark: the Walrasian demand can be defined even if the
consumer preferences are not represented by a utility
function. It is the set of consumption bundles x € B(p, w)
such that for all y € B(p, w) one has x = y.



Properties of the Walrasian correspondence

Proposition

Suppose that u is continuous and locally non-satiated, then the
Walrasian demand correspondence satisfies the following
properties
If p> 0, d(p, w) is non-empty.
Homogeneity of degree zero: for all p € ]Ri_LF /{0}, w e Ry
andt € R one has d(ip, tw) = d(p, w).
Walras’ law: for all x € d(p,w) p-x =w
Convexity: if u moreover is quasi-concave (-, convex),
then d(p, w) is convex.
Strict convexity/continuity: if u morever is strictly

quasi-concave (-, Strictly convex), then d(p, w) is
single-valued (i.e. a function) and continuous.



Remark on price normalization

REINES

As highlighted by homogeneity of degree 0 of the demand, the
absolute value of prices is irrelevant in our setting, i.e. only
relative prices matter. In fact, shifting from a price

p=(p1, - ,pL) totp = (tpy,--- , tp) amounts to change the
unit of account (e.g. from euros to cents). Thus one often
chooses by convention a normalization of prices, either by
setting the price of a particular good (the numeraire) to 1 or by
assuming all prices sum to 1.



Differential characterization of demand

m If u is differentiable then one can characterize x* € d(p, w)
using KKT conditions.

m Namely, if x* € d(p, w), there exists A > 0 such that for all
0=1,--L: %(x*) < APy, with equality if x; > 0.
m Hence, if x € d(p, w), is such that x* > 0, one must have

forsome A >0
Vu(x*) = Ap (1)



Characterization of demand via marginal rates of
substitutions

m If Vu(x*) > 0, Equation (1) is equivalent to the

a *
requirement that for all k, £ € {1,--- L} : m - %
¥

m In other words, marginal rates of substitutions are equal to
price ratios.



Second order conditions

The above conditions are sufficient to ensure x* € d(p, w) if
m U is concave (the Hessian matrix is semi-definite positive)

B or u is quasi-concave, monotonic and satisfies for all
x € Ry, Vu(x) > 0.



Problem set

m Utility maximization problem for Leontieff, Cobb-Douglas
and CES.

m Demand: C10, C12, C13, C17, C19, C20, C21
m Reading list: 2D, 3D, 1C-D,2F



Lecture 3bis: Revealed preferences

m Objectives: Introduce revealed preferences.
m References: MWG 1C, 1D, 2F( up to page 30).



Criticisms of rational choice

m Agents do not maximize preferences (because of altruism,
lack of computing ability, imperfect information,..)

m Preferences are unobservable = Revealed preference
theory as a partial answer.



Choice structures and choice rules

A choice structure consists in :

m A family B of subsets of X (sets of observed possible
choices, e.g. different consumption sets)

m A choice rule ¢ : B — 2X that associates to every set B € B
a subset ¢(B) C B of admissible choices.

Exemples

m Choice sets are all possible budget sets:
B:={B(p,w) | pcRL/{0}, we R}
m Choice rule is Walrasian demand ¢(B(p, w)) = d(p, w)



Weak axiom of revealed preferences

Definition

The choice structure (B, c) satisfies the weak axiom of revealed
preferences if the following property holds:

if for some B € B with x,y € B one has x € ¢(B) then for any
B e Bwithx,y € B andy € ¢(B') one must have x € c(B')

Definition

A Walrasian demand function satisfies the weak axiom of
revealed preferences if for all (p, w), (, p/, w') € R% \ {0} x Ry,
one has:

[0 d(p,w) < w Ad(p,w') # d(p,w)] = p-d(p,w') > w.



Rationalizable choice rule

m For every family B of subsets of X, one can associate to a
preference relation - the choice rule ¢~ such that

c-(B)={xeB|vVzeBxzz}

Proposition

If - is a rational preference relation then for every family B of
subsets of X, ¢~ satisfies the weak axiom of revealed
preferences.

m Conversely, if ¢ is a choice rule on B and - is such that for
all B € B, one has ¢(B) = ¢-(B), 7 is said to rationalize c.

m Given a choice rule (in particular a demand function), is
there a unique preference relation that rationalizes it ?



Rationalizable choice rule 2

Proposition

If (B, c) is a choice structure such that:
the weak axiom is satisfied
B includes all subsets of X up to three elements

Then there exists a unique rational preference relation that
rationalizes c.

m Proof considers the relation x >, y if and only if there
exists B € B such that x, y € Band x € ¢(B).



Rationalizable choice rule 3

m counter-example to rationalizable choice-rule satisfying
warp:
B X={xy,z}, B={{xy}{y. z},{x,z}}
m c({x,y}) ={x}, c{y.z}) = {y}, c({x, z}) = {z},
m there exists demand functions satisfying warp that are not
rationalizable (because the family of budget sets does not
entail sufficient restrictions).

m Revealed preference theory "compensates" for

unobservable preferences only to the extent that one
accepts the maximization principle.



Problem Set

m Exercise C3, C14
m Reading list for next class: MWG 5A-B



Lecture 4-5 Expected utility and decision under risk
(refer to prof. Bloch for updates)

m Objectives: introduce the basic model of decision-making
under uncertainty.

m References: MWG 6A, 6B, 6C.



Setting

m A set of potential outcomes (consequences) C:
consumption bundles, monetary returns.

m C assumed to be finite, C = {cy, -+ , cn}

m There is (objective) uncertainty about the actual outcome.

m The decision-maker faces lotteries (probability
distributions) over C. Namely:

m A simple lottery Lis a vector L = (py,--- ,pn) € Rﬂ such

that Zﬁﬂ pn = 1 where p, is the probability of outcome n
happening (i.e. a probability distribution over C).

m Given K simple loteries and a probability vector
(a1, ,ak) over K, the compound lottery
(Ly, -+, Lg; 1, -+ ,ak), also denoted by > axLg, is the
risky alternative that yields the lottery k with probability ax
(i.e. the convex combination of the distributions Lg.).



Consequentialist premise

m One can associate to a compound lottery
(Ly,---,Lg; a1, -+ ,ak), the reduced lottery / such that for

alln
K
K
Pn = Z OkPn
k=1

where Lk = (pf,--- , p§)
m The consequentialist premise postulates that the decision

maker only cares about this reduced form lottery, i.e. abut
the “consequences” of his choice.

m Accordingly, we focus in the following on a decision-maker
that has preferences - defined over the set £ of simple
lotteries.



Expected utility

m How should/could a decision-maker order risky
alternatives?

m St-Petersburg Paradox. Consider the following variants of
heads and tail:

One tosses a coin until heads come out.

m If heads come out at first round, you win 2 euros.

m If heads come out at second round, you win 4 euros.

m If heads come out at nth round, you win 2" euros.

m How much are you willing to pay to enter such a game ?



Extended expected utility framework

m The expected utility framework can be used to represent
preferences on arbitrary set of risky alternatives.

m Formally, for any set of random variables C on a set C,
given a utility function u : R — R (called the Bernoulli utility
function in this context), one can define the (von
Neumann-Morgenstern) expected utility of any random
variable X as

U(X) = E(u(X)) = /C u(x)dPx(x)

where dPy is the law of the random variable X.

m In the following, we focus on the set of real random
variables, i.e. on random monetary payments and assume
u is increasing and continuous.



Risk Aversion

When they face risk or uncertainty (e.g. risk of accident,
uncertain financial returns ), economic agents are usually
risk-averse. In the expected utility framework, risk-aversion can
be defined formally as follows.

Definition

A decision-maker with expected utility u is risk-averse if for
every random variable X, one has

u(E(X)) = E(u(X))

m Accordingly, the decision-maker is risk-neutral if for all X,
one has u(E(X)) = E(u(X)) and risk-loving if
u(E(X)) < E(u(X)).



Characterization of risk-aversion

m According to Jensen inequality (a standard result in convex
analysis), the inequality u(E(X)) > E(u(X)) is satisfied for
all random variable X if and only if u is concave.

m According to the intermediate value theorem, every
random variable X has a certainty equivalent cx such that
E(u(X)) = u(cx). The decision-maker is risk-averse if and
only if for all random variable X, cx < E(X).

m The risk premium associated to X is then defined by
px = E(X) —cx.



Examples of micro-economic implications of
risk-aversion

m demand for insurance
m demand for a risky asset



Absolute risk-aversion |

Proposition (Arrow-Pratt)

For a random variable X = x + € with E[¢] = 0 and
VAR(¢) = o2, one has: px ~ g =)
) - — 2 U/(X)

7
Accordingly Au(x) = Ltf()(())() is called the coefficient of

absolute risk-aversion (for the wealth x) of the decision-maker.

Taking Taylor developments, one has for ||e|| sufficiently small:
2 2
’ 7" € 7" g
u(X) = u(x+€) ~ u(x) + u (x)e + u (X)? = E[u(X)] ~ u(x) + u (x)?
u(ex) = u(x — px) = u(x) — v (X)px

One concludes by identifying u(cx) and E[u(X)].



Absolute risk-aversion |l

The coefficient of absolute risk-aversion, R,(x), characterizes
risk aversion in the sense of the following proposition:

Proposition

Given two E.U decision makers (characterized by u; and u»
respectively), the following propositions are equivalent;

For each random variable X, p}, > p%

There exists ¢ : R — R increasing and concave such that
Uy =¢olp

Forall x € R, Ay, (X) > Ay (X)



Absolute risk-aversion Il

m Up to an affine transformation, the fonction u(x) =1 —e~*¥
is the only one exhibiting constant absolute risk-aversion

m The fonction v(x) = log(x) exhibits decreasing absolute
risk-aversion

m The quadratic utility fonction w(x) = ax + bx — cx? exhibits
increasing absolute risk aversion.



Relative risk aversion

m A priori the aversion to a certain loss often decreases with the wealth of
the agent.

m In order to obtain a measure of risk aversion relative to the wealth, let
us consider a random variable of the form X = x + xe with E[¢] = 0 and
VAR(e) =

m Let us on the other hand consider 7x such that

u(x(1 = 7x)) = Efu(X)]

m Taking Taylor developments, one has for ||¢|| sufficiently small:

2 2 X202

X"€ 7
5 = E[u(X)] ~ u(x) + u""(x) >

u(X) = u(x + xe) ~ u(x) + u' (x)xe + u”’ (x)

u(x(1 = 7x)) = u(x) — u' ()x7

m One has 7x ~ 2W

m Hence uix() provides a measure of risk aversion relative to the

current wealth. It is called the coefficient of relative risk aversion.



First-order stochastic dominance

If a random variable X is preferred to Y by every EU
decision-maker, it can be consider better in the following sense

Definition
A real random variable X first-order stochastically dominates Y
if and only if for every increasing utility u, one has

E(u(X)) = E(u(Y))

Proposition

A real random variable X first-order stochastically dominates Y
if and only if for all x € R Fx(x) < Fy(x)



Proof first-order stochastic dominance (case of
positive valued variable)

= Lemma: if Z has positive values E(Z) = [;+*°(1 — Fz(2))dz = [;F™° P(Z > z)dz

m Assume X first-order stochastically dominates Y, one has for all x € R, P(X > x) > P(Y > x).
Let us then consider u increasing. One has

E(u(X)) = /0 " P > ot = Ji TP u (t)at >

/+oo 1 +00
P(Y > u~ 1 (t)dt = / P(u(Y) > t)dt = E(u(Y))
0 0

m Let us show the converse by contraposition. Hence, assume there exists X such that Fx(X) > Fy(X).
Consider the utility function u(x) = 1(z, 4 ], One clearly has

E(u(X)) = [0 dFx(x) =1 = Fx(X) < 1 = Fy (%) = E(u(Y)).



Second order stochastic dominance

A natural extension of risk-dominance in economic
environments is to specialize the definiton to risk-averse
decision-makers

Definition
Given two real random variable X and Y with same mean,X

second-order stochastically dominates Y if for every increasing
and concave utility u, one has: E(u(X)) > E(u(Y)).

Proposition

A real random variable X second-order stochastically
dominates Y, with the same mean, if and only if for all x € R

/OX Fy(t)dt < /0 Fy (t)dt



Problem set

m Exercises 26 to 31



Expected utility representation

m A preference - over £ admits an expected utility
representation if there exists a function v : C — R such
that - is represented by U(p1,--- ,pn) = Zﬁﬂ piv(ci)

m In other words, U(L) is the expected utility (for the utility v)
of a random variable with distribution L.

m Under which conditions does a preference over £ admits
an expected utility representation ?



von Neumann-Morgenstern representation theorem

Theorem

if the preference relation - over L is rational (transitive and
complete) and satisfies the continuity and independence
axioms then it admits an expected utility representation.

Proposition

If - admits an expected utility representation, the utility function
on C (i.e. the function v) is unique up to affine transformation.



Continuity axiom

Definition
The preference relation =~ on L is continuous if for any
L L' L"e L, the sets:

m{ac01]|al+(1-a)l' Z L"}

B {ac[0 ]| Zal+(1-a)l}
are closed.

m Alternative statement: the preference relation — on L is
continuous if for any L = L’ = L” there exists p €]0, 1] such
that pL+ (1 — p)L” ~ L'



Intepretation of the continuity axiom

m The continuity axiom rules out that small changes in
probabilities change the ordering between two lotteries.

m e.g. if you prefer driving than walking to work then you
prefer “driving or dying in a car accident with small
probability" than walking (and arriving safely).

m In other words, continuity axioms rules out lexicographic
preferences of the "safety first" type.



Independence (of irrelevant alternatives) axiom

Definition
The preference relation - on L satisfies the independence
axiomifforany L, L', " € L, and « € [0, 1] one has

L=l sal+(1-a)l" mal'+(1 —a)l”
The independence axiom implies the ranking between two

lotteries is independent of other (independent alternatives)
available



Allais’ paradox

m Consider three potential outcomes in euros (2500000,
500000,0) and the lotteries:
m Ly =(0,1,0)vs L, = (0.1,0.89,0.01);
m L:(0,0.11,0.89) vs L} : (0.1,0,0.9)
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Allais’ paradox

m Consider three potential outcomes in euros (2500000,
500000,0) and the lotteries:

m Ly =(0,1,0)vs L, = (0.1,0.89,0.01);
m [,:(0,0.11,0.89) vs L} : (0.1,0,0.9)
m Most of the people prefer L over L} and L, over L.
m However, if one lets L = (19/11,0,1/11) and Lo = (0,0, 1)
one has:
m [y =011,y +0.89L4, L}, = 0.11L + 0.89L4,
L, =0.11L4 + 0.89L, L, = 0.11L + 0.89L,
m Thus under the independence axiom, one shall have:
mLy-L=L>L
mL-L= L= L

m Hence Allais’ paradox.



Machina'’s paradox

m Three possible outcomes: going to Venice > watching a
movie about Venice >~ staying home.

m Yet going to Venice with probability 0.99 and staying home
with probability 0.01,is arguably better then going to Venice
with probability 0.99 and watching the Venice movie with
probability 0.01 because you are likely to hate the Venice
movie because of the disappointment to have missed the
trip.

m In other words, the independence axiom discards regret.



Problem set

m Exercises 32 to 38

m Complete missing proofs (in particular proof of the utility
representation theorem).



Lecture 6: Producer theory (refer to prof. Bloch for
updates)

m Objective: introduce the building blocks for the
representation of producers/firms in micro-economics

m References: MWG 5A, 5B



Production plans

m In general equilibrium, firms are mainly considered as
technological/technical actors.

m The action of the firms consists in transforming input (one
or many) into output (one or many).

m Formally, these actions are represented by a production
plan y € R

m The negative coordinates of y correspond to inputs, the
positive ones to outputs.



Production set

m In general, a given firm can implement different productive
actions.

m Different scales, different techniques, different outputs.

m The set of possible production plans for the firm is called
its production set.

m Generally, it is denoted by Y ¢ Rt and a production set y
is called feasible if y € Y.

m Exemples and graphical representation.



Production and Transformation functions

m If there is a single output, e.g. good L, one can generally
define the production set through a production function
f: Ri” — Ry that gives the maximum quantity of output

f(z) that can be produced using a vector z € Rﬁf of
inputs.

mY={(-z,,-z21,9 | qg<f(z, - ,z.1)}

m More generally, production set be described by a
transformation function F : RF — R

Y ={y eR"|F(y) <0}



Exemples

m Leontieff production function

f(.y17' o ,YK) = minﬂZL-n,K(%)
m Linear production function f(yy,--- ,yk) = 25:1 aye

m Cobb-Douglas production function
f(y1,- . yi) = [[Tizy Y] where T = 1
m More generally C.E.S production function

K
v, yk) =D awyf]”
=1

Properties of the corresponding production sets ?



Properties of production sets

Usual properties of a production set Y ¢ Rt :
Possibility of inaction: 0 € Y

Impossibility of free production : Y N R4 ¢ {0}.
Irreversibility : Y N —Y c {0}.

Free disposability : Y —RL c Y

[
[
[
m Convexity : Y is convex.

m Closedness : Y is a closed subset of RE.



Returns to scale

Let Y be a production set. The production exhibits:

m increasing returns to scale if forall y € Y and for all t > 1,
tyey.

m decreasing returns to scale if for all y € Y and for all
tel0,1],tye.

m constant returns to scaleif forall y € Y andforall t € Ry,
tyey.

Proposition

If the production set is convex and satisfies the possibility of
inaction, then the production has decreasing returns to scale. If
the production set is convex with constant returns to scale, then
the production set is a convex cone.



Efficient production sets

Let Y be a production set.

m A production y € Y is efficient if it does not exist a
production y’ € Y such that y’ > y and y’ # y. In other
words, ({y} +R{) N Y = {y}.

m A production y in Y is weakly efficient if it does not exist a
production y’ € Y such that y7 > y. In other words,
({y} +R%,)NY = 0. We denote by E(Y) the set of
weakly efficient productions of Y.



Problem set

m P1,P2, P3, P4, P5 and following (as time permits)



Lecture 7-8: Producer choice (refer to prof. Bloch for
updates)

m Objective: understand rational choice model of firms’
behavior.

m References: MWG 5C, 5D



The producer/firm problem

m We consider the behavior of a producer/firm with given
production set Y facing a price vector p € R% /{0}

m The producer is “rational” in the sense that he selects the
optimal choice among the alternative he faces. Namely he
maximizes profit.

m Formally, the producer’s problem writes

._ ) max p-y
Q(p).—{ st yeyY

m The set of solutions of this problem is called the supply
correspondence of the firm and denoted by s(p) (or y(p)
and the value of the problem is the profit of the firm,
denoted by 7(p).

m N.B this perspective discards issue related to the
shareholding/financial structure of the firm as well as those
that pertain to its internal organization.



Graphical representation

m isoprofit line

m graphical representation of a production set and supply
function.



Properties of the supply function

Letp >> 0 and Y a non-empty production set.
m Every element y € s(p) is efficient.
m /fY is closed and convex, s(p) is closed and convex.
m Foreveryte Ry, s(ip) = s(p).

m /f Y is closed, satisfies free-disposal and is “strictly convex”
in the sense that for all y,y’ € Y and for all t €]0,1]
ty+ (1 —t)y’ €int(Y), then s(p) is single-valued for all
p € R, such that s(p) # 0.

m 7 is homogeneous of degree one and convex (result from
convex analysis)




Case of constant returns to scale

If'Y has constant returns to scale, then for all p € R, , one has:
m s(p) # 0 ifand only if m(p) = 0
m y € s(p) isandonly if for all A\ > 0, Ay € s(p).




Differential characterization of supply

Proposition

Let Y be a production set of R'. Lety € Y and p R‘i L We
assume that Y is locally representable by a transformation
function t in a neighborhood of y, t is differentiable and there
exists at least one commodity k such that Dy, t(y) > 0.

1) Ify € s(p), then there exists > 0 such that p = uVi(y) and
t(y) = 0.

2) Conversely, we furthermore assume that t is quasi-convex. If
there exists ;. > 0 such that p = uVt(y) and t(y) = 0, then

y € s(p).

This result means that y is the supply of the firm if the marginal
productivities and the marginal rate of substitution between
inputs are equal to the relative prices.



First-order conditions continued

m Assume Y is representable by a production function, i.e.
Y = {(x,—2) e Ry x RE""| x < f(2)}, then the problem
of the consumer is given by

max qf(z)—p-z

L—1
zexRY

m If z* is optimal, thenone hasforall £ =2,--- | L,
of

q@(z*) < pp with equality if z; > 0.
m The condition is necessary if Y is convex (l.e. f concave)
m In particular, if z; > 0 and z; > 0, one has

of .
7)o,
of .

(Z) Pe



Properties of supply and profit functions

Letp > 0 and Y a nonempty closed production set satisfying
the free-disposal assumption. One has:
m (Hotelling Lemma) If s(p) is single-valued, then  is
differentiable at p and V(p) = s(p).
m /f s is differentiable at p, then Ds(p) = D= (p) is symmetric
and positive semi-definite with Ds(p)p = 0 (law of supply).




Cost minimization

m If Y is representable by a production function, i.e.
Y :={(y,-z) e Ry x RE"" | y < f(2)}, then an auxiliary
problem to profit maximization is cost minimization:

[ min p-z
Clp.x) = { st. f(z)>x

m The value c¢(p, x) of C(p, x) is called the cost function and
its solution z(q, x) is called the conditional factor demand.



Properties of the cost function

Letp > 0 and Y a nonempty closed production set satisfying
the free-disposal assumption. One has:

m C is homogeneous of degree one in p and non-decreasing
inx.

B C is a concave function of p. If f is concave, ¢ is a convex
function of x.

m z is homogeneous of degree 0.

m (Sheppard’s lemma) If z(p, x) is single-valued, then c is
differentiable with respect to p at p and
VPC(:B: X) = z(ﬁ? X)'



Envelope Theorem

m Consider the problem

maXyecgrm f(x,q)

91(x,q) =0
gn(X, q) =0
m Let \{, -+, \, denote the associated multipliers, (x(q) a

solution at g and v(q) the value function. Then

ov 8f
_- = E Aj (x
(@) aq P ’aqs (x(a).q



Problem set

m P6,P8, P12, P13,P9, P10,P11, P5, P7, P14 and following
(as time permits)



Lecture 9: competitive equilibrium in an exchange
economy

m Economic agents do not act in isolation...
m Investigate the coordination of agents’ choices and actions.

m Assuming rational and competitive behavior and that
coordination takes place through a system of prices:

m i.e. general competitive equilibrium.
m References: MWG 15A, 15B, 10B



The framework

m Exchange economy: a set of consumers with preferences
and initial endowments.

m One investigates the competitive allocation of goods
among consumers

m abstracting away from the production process

N.B a stylized model but often used to analyze financial
markets, intertemporal allocation of ressources and risks.



The framework

m An exchange economy with a finite number ¢ of

commodities labeled by the subscript h=1,...,/and a
finite number m of consumers labeled by the subscript
i=1,....m

m The preferences of each consumer i are represented by a
utility function u; from R to R.

m Each consumer has an initial endowments e; € RY.

m The total initial endowments of the economy is then
e=>",ecR..



Allocations

An allocation is a vector (x;) € (R%.)™ representing the
allocation of goods to each agent in the economy.

Definition

An allocation (x;) € (R)™ is said to be feasible with respect to
the total initial endowments e if >, x; = e. Accordingly, the
set of feasible allocations is:

Ale) ={(x) € ®R)™|> xi=e}
i=1



Basic properties of the set of feasible allocations

Ifee Rﬂ, the set of feasible allocations A(e) is non-empty,
bounded, closed and convex.

m Non-empty as it contains (e, 0, --- ,0)
m Bounded as for all i, one must have 0 < x; and thus 0 < x; < e.
m Closed because of the continuity of the sum.

m Convex as if (x;), (yi) € A(e), one has for all X € [0,1] :
SO+ (1T =Xy = AT xi+ (1 =), yi =
Ae+ (1 —XN)e=eandthus (\x; + (1 = \y;)) € A(e)

N.B: Closed+ Bounded = Compact



Solution concept

Which feasible allocation(s) should emerge from agents’
interactions ?

m Normative approach: Pareto-optimal allocation (no agent
can be made better of without making another worst off,
see below).

m Cooperative game theory: core allocation (no coalition of
agent can improve upon the allocation).

m Non-cooperative game theory: Nash equilibrium of a
bargaining game.

m General equilibrium theory: competitive equilibrium,

individually rational choices made compatible by a system
of prices.



Competitive equilibrium: underlying economic
assumptions

m Existence of institutions (system of markets,
stock-exchange, Walrasian auctioneer,...) that provides
public prices for commodities.

m Each agent acts in a competitive manner: has no influence
on price, takes the price as given.

m Given a price p € RY, each agent can compute his income

p-ée.



Competitive equilibrium: underlying economic
assumptions

m Existence of institutions (system of markets,
stock-exchange, Walrasian auctioneer,...) that provides
public prices for commodities.

m Each agent acts in a competitive manner: has no influence
on price, takes the price as given.

m Given a price p € RY, each agent can compute his income
p-ée.

m Then, we assume each agent is rational: he maximizes his
utility given his budget p - e;.Hence agent i demands
di(p,p - ei).

m A competitive equilibrium is a situation where the price
system makes the demands of all agents compatible.



Competitive equilibrium: formal definition

Definition
A Walrasian (competitive) equilibrium of the economy
&= ((u;, e)™,) is a price p* € R and allocations (x;) € (R)™

satisfying :
a)Foralli=1,...,m, x/ is a solution of the optimization
problem :
Maximize u;(x;)
p*-xi < p*- e
Xj > 0
and

b) (Market Clearing Conditions) >, x* = >, ;.



Competitive equilibrium: equivalent definition

Definition

A Walrasian (competitive) equilibrium of the economy

& = ((u;, &) ,) is a system of price p* € Ri and allocations
(x¥) € (RS)™ satisfying :

a)Foralli=1,...,m, x € di(p*,p* - &).

b) (Market Clearing Conditions) >, x* = >, e;.
N.B. If the demand functions are single-valued, p* is an
equilibrium price if and only if

m m

Z a(p™,p*-e)= Z &i.

i=1 i=1



Basic properties of competitive equilibrium

Let (p*, (x;")) be a Walras equilibrium of the economy

&= ((ui,&)y)-
i) Forallt > 0, (tp*, (x;")) is a Walras equilibrium of
the economy &.
ii) If the preferences are monotonic, for all
i=1,....m p*-x‘=p*-e.
iii) If the preferences of one consumer are strictly
monotonic, then the equilibrium price p* belongs
toRY ..

iv) Foralli=1,....m, ui(x;) > uj(e).

Proof: Properties of the solutions of the consumers’ problems.
N.B: (i) implies that prices can be normalized.



The 2 x 2 case: the Edgeworth box.

m An economy with 2 consumers and 2 goods.

m Can be represented graphically through the Edgeworth
box.



The 2 x 2 case: the Edgeworth box.

m An economy with 2 consumers and 2 goods.
m Can be represented graphically through the Edgeworth
box.

m The allocation of agent 1 is represented in a standard
coordinate system with origin (0, 0).
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m The allocation of agent 1 is represented in a standard
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m The allocation of agent 2 is represented in the coordinate
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m The set of feasible allocations correspond to the inside of
the “box" formed by (0,0), e and the four coordinate axes.



The 2 x 2 case: the Edgeworth box.

m An economy with 2 consumers and 2 goods.

m Can be represented graphically through the Edgeworth
box.

m The allocation of agent 1 is represented in a standard
coordinate system with origin (0, 0).

m The allocation of agent 2 is represented in the coordinate
system with origin e and with inverted direction of axes.

m The set of feasible allocations correspond to the inside of
the “box" formed by (0,0), e and the four coordinate axes.

m A point xq € Ri in the Edgeworth box corresponds to the
allocation to agent 1 with respect to the origin (0, 0) and to
the allocation xo = e — x; € R2 to agent 2 with respect to
the origin e.



The Edgeworth box (continued).

m The budget line of both agents at price p € R? is
represented by a line going through e € Ri and with
slope —pi/p,
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The Edgeworth box (continued).

m The budget line of both agents at price p € R? is
represented by a line going through e € Ri and with
slope —pi/p,

m The preferences can be represented by drawing
indifference curves for both consumers in the box.

m The set of allocations preferred to x; by agent 1 is the
upper contour set of the indifference curve through x;

m The set of allocations preferred to x» by agent 1 is the
lower contour set of the indifference curve through x»



The Edgeworth box (continued).



The Edgeworth box (continued).

m The demand of consumer 1 (resp. 2) corresponds to the
point(s) where the budget line is tangent to the indifference
curve.



The Edgeworth box (continued).

m The demand of consumer 1 (resp. 2) corresponds to the
point(s) where the budget line is tangent to the indifference
curve.

m The offer curve of consumer 1 is the curve that represents
the demand in the Edgeworth box as the price varies.



The Edgeworth box (continued).

m The demand of consumer 1 (resp. 2) corresponds to the
point(s) where the budget line is tangent to the indifference
curve.

m The offer curve of consumer 1 is the curve that represents
the demand in the Edgeworth box as the price varies.

m An equilibrium materializes in the Edgeworth box as a
point where the demand of both agents coincide, i.e. offer
curves coincide. Indeed, one then has:

di(p,p-e1) =e—d(p,p- €2).

N.B. The equilibrium is not necessarily unique.



The Edgeworth box (example).

m Two consumers with initial endowments e; = (1, 2) and
ez = (2,1) Cobb-Douglas utility u;(x;.1, Xi.2) = x4 x,.1’2*°‘.
m Price of good 2 set equal to 1
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The Edgeworth box (example).

m Two consumers with initial endowments e; = (1, 2) and
ez = (2,1) Cobb-Douglas utility u;(x;.1, Xi.2) = x4 x,.1’2*°‘.

m Price of good 2 set equal to 1

m Offer curve of consumer 1 is given by

(p1 +2)
pi

di(p,p- &) = (a (1= a)(p1 +2)), pr € Ry

m Offer curve of consumer 2 is given by

(a(zp‘l +1)7(1

Py —a)(2p1 +1)), pr € Ry

da(p,p-€2) =



The Edgeworth box (example).

m Two consumers with initial endowments e; = (1, 2) and
ez = (2,1) Cobb-Douglas utility u;(x;.1, Xi.2) = x4 x,.1’2*°‘.

m Price of good 2 set equal to 1

m Offer curve of consumer 1 is given by

(p1 +2)
pi

di(p,p- &) = (a (1= a)(p1 +2)), pr € Ry

m Offer curve of consumer 2 is given by

2Pt

o —a)(2p1 +1)), pr € Ry

d(p,p- €)=

m Equilibrium determined by market clearing conditions:

alPi+2)/p, + aPPi+1)/py = 3 = pj = /(1-a)
(1= a)(p; +2) + (1 - a)(2p; +1) =3 = p} = /(1-0)



A primer on Pareto optimality

Definition

An allocation x in the Edgeworth box is Pareto optimal if there
is no other allocation x' such that for all i x; 77 x; and for one i,
Xj = X; wherei=1,2.

m Graphically, an allocation x is Pareto optimal if both
indifference curves are tangent at x.

m The set of all Pareto optimal allocations is known as the
Pareto set.

m The contract curve corresponds to the part of the Pareto
set where both agents do at least as well as at their initial
endowments.



Problem set

m Micro 1B exercise list: 1, 2, 3,4.



Supplementary material : Existence of a competitive
equilibrium in an exchange economy

m Objectives: understand sufficient conditions for the
existence of a competitive equilibrium

m References: MWG 15C, 16E, 16F



Existence of a competitive equilibrium in an exchange
economy

Theorem

The exchange economy & = ((u;, €;)!" ) has a Walras
equilibrium with a strictly positive equilibrium price if the
following sufficient condition are satisfied :

(i) Foralli=1,..., m, u;j is continuous,
quasi-concave and strictly monotonic;

(i) Foralli=1,...,m,e;>0and> ", e > 0.



Excess demand

Definition
In the exchange economy £ = ((u;, €)1 4) :
The excess demand of consumer i is the function
z; : RY — RS defined by z(p) = di(p,p- &) — €
The excess demand of the economy is the function
z:RY — RY defined by z(p) = >4 zi(p)

The price p € R‘i is an equilibrium price of the economy
&= ((u,e)!,) - ifand only if z(p) = 0.




Properties of excess demand

Proposition

Assume that For alli =1, ..., m, u; is continuous,
quasi-concave and strictly monotonic while e; > 0 and
S, e >0, then:
Z is continuous,
z is homogeneous of degree zero ,i.e for all t > 0 and all
p € R, z(tp) = z(p)
p-z(p) = 0 (Walras law),
Z is bounded below
Iflim,_, o p" = p with p # 0 and py, = 0 for some h, then
liM 400 [12(07) || = +00



Existence of competitive equilibrium |

With two commodities:

m According to Walras law, it suffices to prove there exists an
equilbrium on the market for good 1 and one can normalize
p2 =1

m For p; sufficiently small, one must have z;(p1,1) >0

m For p; sufficiently large, one must have z1(p1,1) <0

m By continuity there must thus exist p; € R, such that
z1(p1,1) =0

In the general case, the proof relies on more complex

mathematical techniques such as Kakutani theorem or degree
theory.



Existence of competitive equilibrium Il

Theorem

Let C be a compact an convex subset of R4 and f : C — C.
There exists x* € C such that f(x*) = x*.

Theorem (Varian, Micro-economic analysis, p. 321)

If z: S — Rt is continuous and satisfies Walras law, there
exists some p* such that z(px) < 0

N.B The original demand might have to be modified to ensure
continuity of z on the frontier of S.

Remark
If z(p*) < 0 and p* >> 0 then one must have z(p*) = 0



Proof of existence following Varian

m Consider g : S — S defined by
pr + max(0, zx(p))

0
1+ max(0,z(p))
j=1

gn(p) =

m Brouwer theorem implies there is a fixed point p*. One gets
successively:
m p; 3554 max(0, z(p*)) = max(0, zx(p*))
m 2y(p*)p; o max(0, (p*)) = zn(p*) Max(0, zn(p*))
= [355 max(0, z(p*))] ¥ Z6(P" )Pk =

2_n2n(p") max(0, zn(p*))
m This yields using Walras law 0 = >, zx(p*) max(0, zn(p*))

m The last equation implies for all h, z,(p*) < 0 and thus
z(p*) <0



Counter-example to the existence of a competitive
equilibrium

m We consider an economy with 2 consumers and 2 goods.

m Consumer 1 has utility u;(xq, X2) = X2 and initial endowment
e1 = (2,2) and thus his demand is given by

2p1 +2
o(p) = (0, P12
P2
m Consumer 2 has utility us(xy, X2) = X1 + X2 and initial endowment

e = (2,0) and thus his demand is given by
(27 O) pr1 < p2
dr(p) =< (2= ez ifp1 =p2
(0.28)  ifpo < py

m = No equilibrium without interiority of endowment or strict
monotiniticy



Counter-example to the existence of a competitive
equilibrium |l

We consider the economy with the following characteristics:
m/i=2,m=n=1.
B ui(xy,X) = xixo and e; = (2,1).
BY ={(y1,)2) ER? | y1 <0,)p <0ifyy > —1,y5 <
1 if Vi < —1 },
This economy doesn’t have an equilibrium = the convexity

assumption is a fundamental requirement for the existence of a
Walras equilibrium.



Lecture 10: Private ownership production economies

m Objectives: analyze the interactions between firms and
consumers.

m References: MWG 15C, 16E, 16F



Definition

A private ownership production economy consists in:
m A finite space of commodities (RY),
m A finite number n of producers characterized by their
production set Y; C RY,

m A finite number of consumers characterized by:
m their utility function u; : RY. — R,
m their initial endowment e; € Rf
m their portfolio of shares in firms (0;)_, where 0; € [0,1] and

forallj, > 1", 05 =1.

To summarize, a production economy is a collection

€= (R, (u &)y, ()i, 09)i=1 1)



Equilibrium

A Walras equilibrium of the private ownership economy £ is an element
(O, (), p7) of (RE)™ x (R®)" x R such that

(a) [Profit maximization] for every j, y;* is a solution of

{ maximize p* - y;
yi €Y

(b) [Preference maximization] for every i, x;" is a solution of

maximize u;(x;)
pr-x; <p*-e+ Z;; 0;p* yj*
Xi Z 0

(c) [Market Clearing Conditions]

m m n
X =3 ey



Basic properties of a Walrasian equilibrium

If preferences are monotonic and ((x7), (y}"), p*) is a Walras
equilibrium of the economy &, then

forevery t > 0, ((x7), (¥/), to*) is also a Walras equilibrium;
for every i, p* - x; = p* - & + > 05p* - yi';
if for every j € J, 0 € Y}, then uj(x;') > ui(e;) for all i;

((x7), p*) is a Walras equilibrium of the pure exchange

3 n * m
economy £ = <u,-, &+ i1 9/,'}/,-)

i=1



Walras law

Proposition

Let us assume that all the preferences are monotonic and strictly monotonic
for at least one consumer. Let (p*, (x7), (7)) € Ri, x (RS)™ x [\, ¥; be
such that:

(a) [Profit maximization] for every j, y;" is a solution of

{ maximize p* - y;
yieYy
(b) [Preference maximization] for every i, x;" is a solution of

pTxi<pt e+l 0ip" Y

maximize u;(X;)
Xj > 0

(c) for all commodities h=1,....¢ =1, 37" x*in = 21 €in+ D0 Yiin-

Then, (p*, (x;")) is a Walrasian equilibrium of the economy.



Example

Production economy with two commodities, one producer and one
consumer :

moui(x,x2) = (xi1)"2(x2)"2 e = (2,1), 611 =1
B Y ={(V1,,012) ER? | y11 <0 y12 < Iyinal};

Given price (p, 1), the demand of the consumer, the supply and the profit of
the producer are given respectively by:

u d‘((p71)7 W) = (%7 g)

1 1
m si(p, 1) = (_47,02’273)

u 771(p71) = 4:17[3

market clearing for good 1 is then given by

1 1
Cp+1+14p) -2+ — =

2p 4p
(0 x5 i) = ((1,2%—1)),(“23@42(%?’]15)),(—2—/5,@_1))

is the unique equilibrium of this economy up to price normalization.



Existence of a competitive equilibrium

The economy &€ = ((u;, &), (Y)), (6;)) has a Walras equilibrium if:

Foralli=1,..., m, uj is continuous, quasi-concave and
monotonic;

Foralli=1,...,m, e;> 0.

forallj=1,...,n, Y is closed, convex and satisfies the
possibility of inactivity.

The total production set Y = ZL Y; satisfies the irreversibility
condition Y N —Y = {0} and the impossibility of free production
YNRE c {0}.

Sketch of the proof at the end of the class (if time permits). See
Debreu, Theory of Value (1984) for a comprehensive account.



Characterization of equilibrium by first-order conditions

Assume:
m for all i, u; is quasi-concave , continuous on RY , differentiable on R
and for all x € RS, Vui(x) € R,
m for all j, Y; is representable by a quasi-convex and differentiable

transformation function ¢, strictly increasing in one of its coordinate.

Proposition

(P, (%), (7)) € RL L x (REL)™ x H/.'\; Y; is a Walras equilibrium of
the economy, is and only if there exists (\j) € R, and (\j) € R7
such that

o for all i, Vui(x7) = \ip* and p* - X = p* - €+ >[4 ¥ip-
o for allj, Vi(y;) = Njp* and t;(y;) = 0;

e for all commoditiesh=1,...,¢0—1,

m m n
* *
Y Xn=D ent Y ¥n
—1 —1 i—1



Characterization via marginal rates of substitution and
transformation

The previous characterization is equivalent to the set of
conditions:

mforalli=1,---mandall hk=1,---m, one has

Ouifoxi n(X;) P

Ph _
Bujonr(XF) andp X =p" e

mforallj=1,---nandall hk =1,---m, one has

Wonaly})  pi
— L = and t; 0
Wonaly?) g 20 V)=

m for all commodities h=1,...,¢—1, > xxh =T el



Problem set

m Exercises 11-14, 15,16,17,18,25
m One-consumer, one-producer economy



The one-consumer, one-producer economy
(Mas-Colell, 15C)

m Two goods: labor (good 1) and consumption good (good
2).

m 2 agents: 1 consumer, 1 firm.

m Consumer has continuous, convex and strongly monotone
preferences over Ri represented by the utility function u
and initial endowment (L, 0).

m Firm produces consumption good from labor using strictly
concave and increasing production function f(z).

m Price of consumption good is denoted by p, wage is
denoted by w.



Behavior of agents

m Problem of the firm:

f —
r;lg(p (2) — wz
labor input denoted by z(p, w), output q(p, w) and profit
m(p, w).
m Problem of the household:
max u(Xxq, X2)
s.t. pxo < w(L —xq) +m(p, w)
L— X1 > 0
Xo >0

Demand denoted by (x1(p, w), x2(p, w)).



Equilibrium

m Equilibrium
L=xi(p", w") + z(p*, w").
and
xa(p", w") = q(p*, w*)



Graphical representation

(=z(p, w). 4(p, W)
Loa(pw)

,0/

(a)

(—2z(p. w). q(p. w))

14

0
T //////://\

X -

'L

(b)

Figure 15.C.1 (a) The firm’s problem. (b) The consumer’s problem.



Graphical representation of equilibrium

.
L
4

~

m Equilibrium if and only if utility is maximized given
technological constraints.
m First and second welfare theorems.



Non-convexities and welfare theorems

X2 q
z (p* “#)
> ~ x
R 4
Stope = - : ‘%\ * | N
4 x* i - N q* :
i
f
N e
[0 S NE— 0 ~ Oy
‘ x* _ox N o* B o*
! L , }4—1—————-—A—~>{
! 1
(a) (b)

Figure 15.C.3 (a) Failure of the second welfare theorem with a nonconvex technology.
(b) The first welfare theorem applies even with a nonconvex technology.



Lecture 11 : Pareto Optimality in production
economies

m Objectives: investigate the welfare properties of market
equilibrium.
m References: MWG 16C, 16D.



Pareto Optimum

Outline

Pareto Optimum



Pareto Optimum

Attainable allocations in an exchange economy

In the exchange economy & = (R, (u;)T,, e), the set of
attainable/feasible allocations is:

Ale) = {(x,-) e ™Y %= e}
i=1




Pareto Optimum

Attainable allocations in a production economy

In the production economy &€ = (R, (u;)1,, (Y))Ly, e), the set
of attainable/feasible allocations of is:

Ale) = {((Xf),(y/)) e RO <[]V xi= e+ZY/}
j=1 i=1 j=1

With a slight abuse of notation, one says that (x;) € (R%.)™ is
feasible if there exists (y;)) € Hj’-’:1 Y; such that

((x0), (%)) € Ale)



Pareto Optimum

Definition

Definition

An allocation (x;) € (R)™ is preferred in the sense of Pareto to
an allocation (x!) € (R%.)™ if for all i, uj(x;) > uj(x]) and if for at
least one iy, Uiy (Xiy) > Ujp (X} )-

Definition
An allocation (X;) € (R )™ is a Pareto optimum if it is feasible

and if there does not exist a feasible allocation (x;) which is
preferred to (X;) in the sense of Pareto.

Comment: the notion of Pareto optimum is a“minimum" notion
of efficiency, it doesn’t embed any notion of social choice.



Pareto Optimum

Reminder: Pareto optimum in the Edgeworth box

Definition
An allocation x in the Edgeworth box is Pareto optimal if there

is no other allocation x' such that for all i x; 77 x; and for one i,
X; = X{ where i =1,2.

m The set of allocations preferred to x; by agent 1 is the upper contour set
of the indifference curve through x;

m The set of allocations preferred to x, by agent 1 is the lower contour set
of the indifference curve through x,

m Graphically, an allocation x is Pareto optimal if both indifference curves
are tangent at x.

m The set of all Pareto optimal allocations is known as the Pareto set.

m The contract curve corresponds to the part of the Pareto set where both
agents do at least as well as at their initial endowments (it is also the
core of the economy).



Pareto Optimum

Characterization of Pareto optima

Proposition

Assume that for alli = 1,..., m, u; is continuous and strictly
monotonic on R.. An allocation (X;) is Pareto optimal if and
only if (x;) is a solution of the following problem.

max uy(xq)
(x)E®E)™
. ui(x;) > ui(x;) foralli=2,...,m,
subject to L' ! T
’ { Y Xi=e

Proof:

One uses the fact that if (X;) is a Pareto optimum the allocation
to consumer 1 can not be improved upon and that the converse
is true if the utilities are strictly increasing.



Pareto Optimum

Differential characterization of Pareto optima

Proposition

Assume that for alli =1, ..., m, u; is differentiable and quasi-concave
onRY, and Vui(x) e RL, forallx € RY ..

An interior allocation (x;) € (R, )™ N A(e) is Pareto optimal if and
only if there exists (\z, ..., \i, ..., Am) € R™" such that

Vuy ()_(1) = /\,'VU,‘()_(,'), Vi= 2,....,m
In other words, at an interior Pareto optimum X, all the marginal rates

of substitution are equal, i.e. foralli=1,---mandall h,k =1,---m,

one has:
Oufox »(X;)  OUi/oxi n(X{)
Ouifox k(X)) O /ox k(X])




Pareto Optimum

Characterization of Pareto optima in a production
economy

Assume that for all i = 1,..., m, u; is continuous and strictly
increasing on Rﬂ and for all j, Y} is represented by a continuous
transformation function ¢.

Proposition

An allocation ((x;), (¥;)( is Pareto optimal if and only if it is a
solution of the following problem.

max uy(xq)
(x)E(RE)™

ui(x;) > ui(x;) foralli=2,...,m,
subject to ti(y;) <Oforallj=1,---.n
Yilixi=e+ YLy



Pareto Optimum

Differential characterization of Pareto optimality in
Production economies

Assume that

m for all i, u; is continuous and quasi-concave on R , differentiable
onRY, and Vu;(x) e RY, forall x e RY ..

m for all j t; is differentiable and quasi-convex.

A feasible allocation ((X;), (¥)) € (R{.,)™ x Hj’.’:1 Y; is Pareto
optimal if and only if:

Foralli=2,..., m, there exists \; > 0 such that
Vui(x1) = \iVui(X;) and

forallj=1,...,n, t(y;) = 0 and there exists \; > 0 such
that Vuy(X1) = )\,Vt,(}_/,)



Pareto Optimum

Characterization via marginal rates of substitution and
transformation

The previous characterization is equivalent to
m foralli,i/ =1,---mandall h,k =1,---m, one has

Ouifax; n(X;) o 8Uj/axi/,h()_(f/)
Bui/ax,,k()_(;) o 6ui’/BXi/yk()_(//)

m forallj,j/=1,---nandall h,k =1,---m, one has

O4/ay, (Vi) 0% /0wy (%))

oy (¥i) %% oy (1))
m foralli;j=1,---m,allj=1,---nand all h,k =1,---m, one has:

Ouifoxi n(Xi) _ O/oyn(¥)

ouifoxi k(Xi)  O/oy (%))




Pareto Optimum

Feasible utilities

The set of feasible utilities is
U(A) = {(u1(x1), .., um(xm)) € RT | (x;) € A(e)}

Lemma
Ifforalli=1,...,m, u;is continuous, the set of feasible utilities
is compact.



Pareto Optimum

Characterization of Pareto optimal through Negishi
weights

For all A € RT, we consider the problem

f max 7 Nui(x)
Pa { st (x) € Ae)

Proposition

m If(X;) is a solution to P for some X € R, , then it is a Pareto optimum.

m Conversely, if U(A) is convex, (X;) is a pareto optimum if there exists
X\ € RY such that (x;) is a solution to Py.

Proof:

The first statement is straightforward. The converse relies on the supporting
hyperplan theorem: the vector of utility at a Pareto point is at the boundary of
u(A) — RE.

The (Negishi) weights quantify the weight assigned to the utility of each agent



Pareto Optimum

Supporting Hyperplan theorem

Let C c RN be a convex set and x ¢ int(C). There exists
p € RN such that for all y € C, one has:

p-x>p-y



Pareto Optimum

Existence of a Pareto optimal allocation

Proposition

The production economy € = (R, (u;)™,, (YD, e) has a
Pareto optimal allocation if the utility functions are continuous
and (YL Yj+ €) NRY, is bounded and closed.



Pareto Optimum

Existence of a Pareto optimal allocation: proof

It suffices to remark that the following maximization problem
has a solution ((X;), ¥).

max M ui(x;
()@ ) 2uim UX)
x; e RY foralli=2,...,m,
Subject to ti(yj) <Oforallj=1,---,n

Y Xi=e+ Yy



Welfare theorems

Outline

Welfare theorems



Welfare theorems

Statement of the problem

m s coordination by the market efficient ?

m First welfare theorem: competitive equilibria are Pareto
optimal

m Given a certain social objective, can it be implemented by
the market ?

m Second welfare theorem: Pareto optima can be
decentralized as competitive equilibria.



Welfare theorems

First welfare theorem

Theorem

If((x;"), p*) is a Walras equilibrium of the economy

& = (u;, €)™, and for all i, u; is monotonic, then the equilibrium
allocation (x;") is Pareto optimal.

Proof:

Assume that (x;") is not Pareto optimal and consider an allocation (X;) which
is Pareto better than (x;"). One can then show that

m m
p* . Z TS p* . Z X/'*
i=1 i=1

which leads to a contradiction with

m m m
ZX,'* = Z)_(,' = Ze;.
i=1 i=1 i=1



Welfare theorems

Second welfare theorem

Assume that for all i, u; is continuous, strictly quasi-concave on R’ ,
differentiable on RY_, and Vu;(x) € R forall x € R ,.

Proposition

If (x7) € (R%)™ is a Pareto optimal allocation of & = (u;, &)1 ,,
then there exists p* € RY . such that (p*, (x¥)) € RY, x (R{,)™
is an equilibrium of the economy £* = (u;, x/)i"; and one has

P = Vus(x})



Welfare theorems

Reminder: differential characterization of Pareto
optima

Under the assumptions of the second welfare theorem:

Proposition

An interior allocation (x;) € (R, )™ N A(e) is Pareto optimal if and
only if there exists (\z, ..., \i, ..., Am) € RT" such that

Vu, ()_(1) = )\,’VU/()_(,‘), Vi= 2, ..., m

Proposition

(p*, (X)) € A(e) is a Walras equilibrium of the economy, if and only
there exists (\;) € R, such that

m e foralli, Vui(x;) = \ip* and p* - x;* = p* - &;;



Welfare theorems

Decentralization of Pareto optima

Corollary

Under the assumptions of the second welfare theorem, any
Pareto optimal allocation (x;) € (R )™ can be decentralized
as a Walras equilibrium using transfers (t;) € (RY)" such that
ST ti=0andp*-(e+t)=p*-x;foralli=1,...,m. The
equilibrium price p* is called the supporting price for the Pareto
optimum.



Welfare theorems

Decentralization of Pareto optima

Remark

If the Pareto optima of an economy are known as well as the
associated supporting prices, one can compute the equilibrium
for all initial endowments. Indeed, the equilibrium associated to
the initial endowments (e;) are the elements (p*, (x;")) such that
(x") is a Pareto optimum, p* is the supporting price and
p*-xt=p*-eforalli=1,... . m—1.



Welfare theorems

Implications of the welfare theorems

m The welfare theorems convey the idea that the state shall
only be concerned about the redistribution of revenues
(endowments) and then let the market operate freely to
reach an equilibrium allocation.

m This however rests on a number of explicit (continuous and
concave utility functions) and implicit assumptions (no
strategic behavior of agents, no external effects, no public
goods,...)



Welfare theorems

First welfare theorem for production economies

Proposition

IF((x7), (¥}"), p*) is a Walras equilibrium of the private
ownership economy € = (R, (ur, &), (Y)1, (05),=1 =)
and for all i, u; is monotonic, then the equilibrium allocation
((x7), (¥}")) is Pareto optimal.



Welfare theorems

First welfare theorem for production economies: proof

The proof is very similar to this in the exchange economy:

m We consider an equilibrium ((x7), (y;')) and assume that if
is Pareto dominated by ((x;), (y}))-

m One must then have
m m
) =1 i=1 j

m Thus for at least one jo, p* - yj;, > p* y/’;

m This contradicts the fact that the producer j, maximizes its
profit for the price p* at yj?;



Welfare theorems

Second welfare theorem for production economies

Assume that

m for all i, u; is continuous and quasi-concave on R, differentiable
onRY, and Vu;(x) e RY, forall x e RY ..

m for all j t; is differentiable and quasi-convex.

If((%:), (7)) € (RG )™ x Hj’-’:1 Y; is Pareto optimal, there exists
a price p € R, | such that

for every j, ; is a solution of { Max:rr?/ze By
Yi€Yj
Maximize u;(x;)
for all i, X; is a solution of { p-x; < p-X;
Xi >0

il Xi=e+ ¥



Welfare theorems

Problem set

m Exercise 4-7, 19-24 in Micro1B.

m Parteo optimality and welfare theorems in the Edgeworth
box.
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